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Summary

Road traffic externalities such as congestion, high noise levels, 

emission, accidents, are increasing due to the rise in vehicle 

ownership. Owing to financial, geographical and/or feasibility 

constraints, it could not be practically feasible to combat these 

externalities by expanding infrastructures. This thesis presents a 

novel and interesting road pricing approaches to deal with these 

conflicting objectives with multiple actors. Models show that we can 

induce optimal system performance among competing stakeholders. 
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Chapter 1

Introduction

1.1 Background

Traffic externalities such as congestion, air pollution, unacceptably high noise
levels, accident rates and road maintenance costs are increasingly becoming prob-
lematic in most countries. Over the past years, vehicle ownership has increased
tremendously. It has been realized that the social cost of owning and driving a
vehicle does not only include the purchase, fuel, and maintenance fees, but also
the cost of man hour loss due to congestion and road maintenance. Costs of
health issues resulting from accidents, inhalation of poisonous compounds emit-
ted from vehicle exhaust pipes, and exposure to high noise level from vehicles
add to the welfare loss. Due to financial, geographical, and political limitations,
and the fact that even the expansion of the existing infrastructure may not lead
to efficient use of transportation networks [12], it is envisaged that road pricing
can be used as a tool to achieve a more efficient use of the existing infrastruc-
ture. However, until now, researchers have mostly focused on congestion pricing
neglecting the overall effect of such practice on the entire network system as well
as on the other traffic externalities. Most real life optimization problems require
the “simultaneous optimization” of more than one objective. This is because
many real life problems concern many different objectives. In most cases, these
objectives are in conflict with each other and may or may not be equally im-
portant. Tolls will be employed to influence the behaviour of network users so
as to achieve a desired network routing. Our motivation for this research further
stems from the ‘unrealistic but easy’ assumption that toll setting is the role of
just one actor, for example in Joksimovic [27]. However, this is not the case in
general. Specifically, if different stakeholders are allowed to place (or at least
influence) tolls in the network, it becomes clear that the stakeholders may have
conflicting objectives which will lead to conflicting toll proposals. For example,
the insurance companies may like to set tolls to minimize road accidents, whereas
the ministry of economics may be interested in minimizing man-hour loss due to
traffic congestion so as to boost productivity. On the other hand, a toll proposal
that increases speed, thus reducing congestion, may lead to an outright increase
in traffic emission, noise and safety related issues. Our main interest is to analyse
from a game theoretical perspective the situation where these actors seek vari-
ous (usually conflicting) road pricing schemes in order to support their different
goals. Traditionally, the computation of tolls that minimizes a single objective is
formulated as a bi-level optimization problem. Since game theory can beautifully
describe human behaviour, it is well suited to investigate the behaviour of all the
players, and particularly, when and how a “cooperative” solution concept in the
form of a common road pricing scheme can be found for the actors. We also
have to bear in mind that cooperation among actors may be to the detriment of

1



2 Chapter 1. Introduction

the “poor” road users. Thus, our task includes developing a pricing scheme that
will leave everyone (both actors and road users and even the central government)
simultaneously contented. No doubt, this may involve more than a two-level op-
timization approach, so the use of rigorous and yet simple mathematical tools
will be inevitable. Finally, we expect that this study leads to more realistic and
convincing “fair tolling schemes” which can also be used in the future Dutch
tolling system (Anders Betalen voor Mobiliteit or ABvM). These models are ana-
lysed for a static traffic assignment, and be extended to time dependent traffic
assignment.

1.2 Problem statement

Though the need for road pricing is well understood, its implementation has
suffered setbacks for political reasons and poor levels of acceptance. The reasons
for the setbacks are mostly because the proposed schemes are not considered ‘fair’
enough from the users’ and stakeholders’ perspectives Schaller [54]. Users and
stakeholders feel that their interests are either not represented in the objectives
or do not have equal weight as the interests of other stakeholders involved in the
decision making process. Moreover, if the factors considered in a pricing scheme
are ill-defined, it may not survive intelligent arguments both from political and
academic arenas. It is in view of the aforementioned setbacks that this research
intends to study the road pricing problem from a game theoretical perspective.
Since road pricing has a lot of potentials, especially when it comes to alleviating
and/or reducing traffic externalities, it is obvious that there is a need for a road
pricing scheme that incorporates fairness and equity issues leaving all participat-
ing actors contented, and thus improving the acceptance level of the scheme.

1.3 Research objectives, scope and questions

1.3.1 Research objectives

Our overall objective of this thesis is to develop a road pricing scheme that is
fair or at least perceived to be fair by all stakeholders involved. With the scheme
developed, we hope that road pricing potentials will be fully harnessed with little
political and acceptance issues. We intend to analyse mathematically how and
when optimal fair tolls can be achieved.

1.3.2 Research scope

The thesis focuses on deriving a general fair tolling scheme that is optimal for
the transportation system and the society. To achieve this goal, our research
calls for the interplay of three different fields in applied mathematics and traffic
engineering, namely: (1) Game theory, in which mathematical attempts are
made to capture behaviour in strategic situations, where a player’s success in
making choices depends on the choices of other players; (2) Multi-level/ multi-
objective optimization which involves solving more than one-level optimization
problem and where each level may comprise more than one objective; and finally
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(3) Traffic engineering which employs engineering techniques (mainly on re-
search and construction of the immobile infrastructure) to achieve the safe and
efficient movement of people and goods. These infrastructures not only include
roads, railway tracks and bridges, but also the use of dynamic elements such as
traffic signals and lights, detectors, sensors and tolls. The theory of games men-
tioned earlier will be used to extensively analyse behaviour of the rational road
users and the stakeholders.

1.3.3 Research questions

Owing to the problem statement in subsection 1.2, the research questions as
discussed in this thesis fall into five major categories which do not have clear
demarcations. These are set out below.

1. Under static traffic assignment (STA), the thesis addresses the following
questions:

• What happens when stakeholders do not cooperate in toll setting?
• Under which conditions can the existence of a Nash equilibrium (NE)

be guaranteed?
• Can we design a mechanism that induces a Nash equilibrium between

the actors?
• When and how can a cooperative solution concept in the form of a

common road pricing scheme be found?
• If the stakeholders agree to cooperate, how would they share the be-

nefits?
• Can we design a mechanism that induces a cooperative outcome on

otherwise non-cooperative actors, and thus achieve the system op-
timum or any other prescribed state within the system?

• Which coalitions among the stakeholders are likely to be formed in a
cooperative concept?

• What can we say about the various classical solution concepts from
cooperative game theory, such as core, nucleolus and bargaining sets?

2. Equity issues:
Can we design a tolling scheme such that:

• People do not pay “unnecessarily high” tolls because of where they live
or work.

• Flat tolls or user-specific tolls: which is more acceptable and to whom?
• OD-based tolls or link-based tolls: which is better from both the sys-

tem’s and users’ perspectives?
• Finally, can we find a tolling scheme that leaves every player (including

the road users) contented?
3. Implementation and practical application of our model

• How does the model apply to a realistic network.
4. Model extension

• In which other domains might our models be applicable?
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5. What are the policy implications of the study?
• What can the government, stakeholders, and road users learn from it?
• How feasible are the models?

1.4 Research approach

Owing to the nature of the task at hand, the problem will be formulated as a
multi-level multi-objective optimization problem with various players handling
different objectives at various levels. Firstly, we will model the stakeholders at
one level and the road users at a lower level. The stakeholders will influence
the behaviour of the road users with the aid of road tolls. In contrast to the
traditional way of modelling road pricing where a leader controls the road users
using tolls in order to achieve a cumulative benefit for the stakeholders or the
society, the proposed model allows the stakeholders to compete for optimal link
flows and tolls due to their conflicting objectives. Each actor will always try
to set a toll such that the cumulative link toll vector will profit him and him
alone. We will study the effect of the actors’ selfish toll setting on themselves
as well as the effects on the road users. This will be modelled as an equilibrium
problem with equilibrium constraints (EPEC). The stability of the toll setting
game between the actors will be investigated under the Nash equilibrium (NE)
concept from game theory. With the results we have, we then go on to develop
a road pricing model for non-cooperative actors. If NE does not exist, then we
will be challenged to design a mechanism that will enforce NE among actors since
only then will the game terminate. Cooperation among some stakeholders over
the level of toll to be set on a given road segment will also be included in the
stakeholders’ problem.
Since a grand coalition that will likely increase the system efficiency may not nat-
urally be formed between the actors, we will design a mechanism and/or profit
sharing scheme that can induce a cooperative outcome on the actors. With this
in mind, we intend to introduce a higher authority (say the government/grand
leader) who designs these mechanisms and ‘imposes’ them indirectly on the act-
ors taking part in the road pricing game. This will again lead to a road pricing
model for cooperative actors. Answers to research questions such as which mech-
anism design can induce Nash equilibrium and/or cooperation among the actors,
possible coalitions and the study of incentives for cooperation will be clearly
demonstrated in the model. Using the developed models, we will make detailed
and striking comparisons between the non-cooperative and cooperative pricing
approaches. We expect this comparison to lead to a suggestion for the most ef-
fective road pricing scheme(s). This suggestion will be confirmed by testing the
models using numerical examples. Our study will simultaneously deal with fixed
and elastic demands. The models developed under static traffic assignment will
then be extended to time dependent traffic assignment owing to its practical fla-
vour. We will carry out sensitivity tests to determine how link tolls change with
network structure, demand and social welfare. We will then investigate various
classical solution concepts of cooperative and non-cooperative game theory. These
concepts include: Nash equilibrium, core, bargaining sets, cost sharing formulae
and stability of solutions among others. Other tolling schemes such as OD-based
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scheme will be studied and compared with the link-based scheme. In the end, we
will show that our models are not, in fact, limited to a transportation field, but
can be applied in other interesting fields to solve equity, fairness and optimization

Traffic Models

Demand SupplyNetwork
Government/grand leader problem

formulated as multi-objective problem

Stakeholders’ (+ Users’) problem

formulated as multi-objective problem

((non-) cooperative game approach)

Routing and network loading

Static Models Dynamic Models

Wardrop’s  equilibrium

Users’ problem

Effects

- pricing scheme

- travel time

- emission

- noise level

- road damage

- traffic safety

- ...

Tolls (y)

Tax (x)

Tolls

Tax

Extension to other real life 

problems

Multi-level Optimization and Game 

Theory

Figure 1.1: Theoretical framework

issues. The Figure above describes the modelling idea of the multi-level solution
approach to the problem.
Figure 1.1 above describes our game theoretical approach to solving the multi-
objective multi-stakeholder road pricing problem where the stakeholders compete
for a desired toll pattern to optimize their individual objectives. The stakeholders’
tolls are used to steer road users to a desired traffic flow pattern. As a mechanism
to control the behaviour of stakeholders, the Grand leader (at the highest level
of the multi-level system) uses tax mechanism to steer the stakeholders to choose
a set of toll patterns desired by the system or by the Grand leader. As shown in
the flow diagram above, the tolls as well as the taxes are returned back into the
transportation system so as not increase societal costs.
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The problem setting is as follows: we take that the Grand leader (GL) knows
that the users will react according to Wardrop’s equilibrium on perceiving the
tolls from the stakeholders, the GL also knows that the stakeholders will toll
the network in order to optimize their individual objectives Fi, so knowing these
facts, he solves the system problem, levying taxes (x) on the stakeholders to steer
them towards a toll pattern that will in turn steer the users to a system desired
flow pattern z. At the second level, the stakeholders also know that the users
behave according to Wardrop’s equilibrium, so they choose their tolls (y) in a
fashion that steer the road users to an equilibrium flow pattern that satisfies
their individual interests. The lowest level represents the road users who travel
according to Wardrop’s equilibrium with respect to total travel costs (including
the travel time costs, tolls, and so on).
Figure 1.1 gives a schematic overview of the tolling model and can mathematically
be described as follows:

min
x,y,z

(F1 (x, y, z) , F2 (x, y, z) , · · · Fk (x, y, z) , f(y, z)) [GrandLeader]
s.t

G̃ (x, y, z) ≤ 0
min
y,z

(F1 (x, y, z)) ,min
y,z

(F2 (x, y, z)) , · · · ,min
y,z

(Fk (x, y, z)) [Stakeholders]
s.t

G (x, y, z) ≤ 0
min
z
f (y, z)) [Users]

s.t

g ( y, z) ≤ 0

Where x ∈ R|K×A| are the Grand leader variables (the taxes), y ∈ R|A| are the
stakeholders variables (the tolls), and z ∈ R|A| are the users’ variables (the flows).
Fi is actor k’s objective function, and f is the users’ objective function. G̃ (x, y, z)
, G (x, y, z) and g (y, z) are constraints associated with the GL, the stakeholders
and the users respectively. Observe that each level is a full optimization pro-
gram. Notice also that both the stakeholders’ and the users’ problems are fully
represented in the GL’s problem. Figure 1.1

1.5 Relevance

1.5.1 Introduction

The research in this thesis falls within the road pricing subject of transportation
economics, concatenating three different fields in applied mathematics and traffic
engineering, namely: (1) Game theory, (2) Multilevel/ multi-objective op-
timization and (3) Traffic engineering. Furthermore, road pricing falls within
the scope of ‘strategic modelling for sustainable development’. Traffic engineer-
ing involves the study of traffic flows, measures, indicators, infrastructures and
traffic externalities. The objective of these studies is to understand and improve
the overall network efficiency. Road pricing has proven itself over time as one
of the tools to optimize the use of transportation networks. We have also men-
tioned that transportation policies are often determined by multiple stakeholders.
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Sometimes, these stakeholders have different interests and objectives, and selfish
actions may lead to a bizarre network situation. Similarly, an optimal traffic
setting (e.g. traffic light setting) at one road junction may lead to a poor traffic
flow at several other junctions, which may result in a bizarre network effect. Our
problem, therefore, is to design the traffic light in one junction such that every
other junction as well as the entire network operates efficiently. However, we are
not going to design a model for traffic signals, but a road pricing scheme that
leaves every player contented.

1.5.2 Scientific relevance

As for scientific relevancy, the research will hopefully shed more light on the
multi-level optimization approach to many multi-objective problems. It will ex-
plain from a game theoretical perspective how different entities with different
(conflicting) objectives can be modelled such that every entity is contented. Fur-
ther, it will demonstrate a mechanism that can be used to lure actors of con-
flicting interest to a common (system optimum) interest. This can be extended
to a wide range of scientific fields as we demonstrate in this thesis. The study
will also shed light on analytical models for both static and dynamic road pricing
schemes. The study describes various road pricing schemes ranging from existing
schemes to brand new schemes.

1.5.3 Societal relevance

For the society, the research represents good news since it considers the effect
of traffic on, for example, common road users, equity issues and societal welfare.
Implementation of the models developed will also ensure that the stakeholders
do not ‘enrich’ themselves to the detriment of road users.

For the central government, we will provide a mechanism that leads to a co-
operative outcome among generally non-cooperative stakeholders and/or regional
governments.

For the regional governments or the stakeholders, the outcome of the research
will aim to develop tolling schemes that would make road users and stakeholders
contented.

1.6 Thesis outline

We present the summary of this thesis in the form of a flowchart enabling the
reader to navigate to chapters of interests.
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Chapter 2

Theoretical background

2.1 Developments in road pricing

2.1.1 Introduction

Economists found that when a resource that is vital and scarce is free or under-
priced, then demand for such a resource will outstrip the supply, resulting in
shortages. This phenomenon is readily seen in the transportation sector. When
the demand or number of vehicles using a certain road exceeds the road’s capacity,
then congestion begins to build up. This using up of road capacity mostly occurs
during the so called peak hours. In 2006, it was estimated that there were 41,118
traffic jams, and approximately 60 million vehicles lost hours on Dutch highways
[10, 6, 5]. It is estimated that the total amount of vehicles that lost hours on the
secondary road network is even higher [20]. In the most populous and industrial-
ized African city, Lagos, Nigeria, with a population of over 14 million people, it
is estimated that each resident on average loses approximately three hours every
day to road congestion (personal experience). The negative effects of congestion
range from time and man-hour losses to damages to pavements, environment and
residents in the urban areas. Owing to these undesirable effects and for the fact
that road expansions may be infeasible, and even more be counter productive
(due to Braess paradox) [12], experts propose the use of road pricing to tackle
these problems. As road is a valuable and scarce resource, they suggest that it
ought to be rationed by a pricing mechanism. Road users should pay for using the
road network to make correct allocation decisions between transport and other
activities. On the other hand, imposing tolls on (certain) roads will make users
change their planned routes, and by so doing, traffic is more ‘evenly’ distributed
throughout the network in and over time. They argued that this reduces the en-
tire network travel time. With the advent of electronic road pricing techniques,
it is now easier than ever to implement road pricing since cars no longer have
to stop before being charged. This will ensure that road pricing does not cre-
ate unnecessary congestion. Others [1, 22] propose the use of vehicle tax and
differential parking charges to combat congestion. They argued that imposing
taxes on vehicles will discourage people from buying cars. By charging users of
certain roads to specific parking areas, which they argue, will reduce the number
of cars entering a congested area while not interfering with business activities
and shopping. For an initial short amount of time, users are charged relatively
small amounts, and then for longer periods, they are charged more. Thus, users
who need short term parking benefit from such a parking scheme while others
are encouraged to use public transportation and commuting. In fact, the truth is
that the benefits of owning a car outweigh the taxes, and the subsidies received
by employees from their employers for transportation fares cushion the effect of

9
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parking charges. These reasons make it impossible to tackle congestion problems
with such taxing schemes proposed in [1, 22]. Furthermore, parking fees do not
depend on the traffic volume or distance travelled, neither do they depend on the
environmental characteristics of the vehicle. Traffic in transit through a conges-
ted area is not affected by parking fees at all. These show that parking fees are
not efficient ways to battle traffic externalities. The interested reader is referred
to [39] for an early survey of such schemes. Before we continue with different road
pricing schemes, let us first see a few selected implementations of road pricing in
the world today.

2.1.2 Applications of Road Pricing

In this section, we review some places where road pricing schemes have been
implemented successfully, the advantages and disadvantages and where they have
failed.
Singapore in 1975 introduced the Area Licensing scheme (ALS) making it the
first country to design and implement a practical (low-tech) congestion pricing.
This was later replaced by Electronic Road Pricing (ERP) in 1998. The aim
was to check traffic (at peak periods) into the Central Business District, so that
congestion is minimised. The tolls would vary according to average speed on the
network.
Norwegian cities of Bergen, Oslo and Trondheim, in 1986, 1990 and 1991 respect-
ively, introduced cordon pricing scheme to raise revenue for financing road pro-
jects and to small extent, public transport. Though the scheme was not originally
designed to reduce traffic, some impact on travel behaviour and traffic volumes
were noticed. One drawback of the Trondheim toll ring as a financing mechanism
is that about one-third of the region’s drivers live inside the ring and therefore,
rarely pay charges, yet they benefit from some of the road improvements.
Autoroute A1 is an express way connecting Paris to Lille, about 200 km to the
north. Vehicles receive a ticket upon entering the express way and pay at a toll
booth upon exiting, an amount depending on the length of the trip. The A1 is
subject to heavy traffic near Paris on Sunday afternoons and evenings. In April
1992, after a period of extensive public consultation and publicity, this congestion
problem was confronted by implementing a time varying toll scheme for Sundays
only. A special ‘red tariff’ is charged during the Sunday peak period (16:30–
20:30), with toll rates 25 to 56 percent higher than the normal toll. Before and
after the peak, there is a ‘green tariff’ with rates 25 to 56 percent lower than the
normal toll. These hours and rates were designed so that total revenues are nearly
identical to those collected with the normal tariff. This property was believed
essential for public acceptance, which, in fact, has been largely high.
San Diego I-15 Express in 1996 introduced a high occupancy toll (HOT). As a
result, the spare capacity of the HOT lanes is now more efficiently used, and
moreover, many users are enthusiastic over the scheme and are ready to pay
provided they get an enhanced service.
In 1997, 407 Express Toll Road, Toronto started operation. Traffic demand rose
from 11,000 to 12,000 cars (for this road) in peak hours, and at the same time,
average speed is about double that of the nearby congested public highways.
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London, on February 17, 2003, kicked off congestion pricing to reduce traffic con-
gestion, increase journey time reliability and decrease air pollution. The benefits
of London’s congestion charging include: 15% traffic reduction, 30% congestion
reduction, 12% pollution reduction (CO2, NOx, PM10), journeys became more
reliable, buses significantly gain time reliability, and substantial reduction of road
accidents among others.
On January 1, 2005, the German Federal Government introduced distance-related
tolling of heavy trucks (≥ 12 tons) using “Autobahns”. The technology is based
on GPS/GSM in order to have the option to extend tolling to all kinds of roads
and vehicles later. The amount of tolls is based on the internal/direct costs caused
by heavy trucks - calculated according to a special EU-directive. The net toll-
revenue was decided to be used exclusively for the transportation infrastructure
- 50 % for the Federal Highways, 50 % for the Federal railways and the inland
waterways. Since the inception of the scheme, it has been working without any
problems.
Stockholm in Sweden introduced a trial system with 19 toll plazas from 3rd
January to 31st July 2006. After successful trials, the system was continued from
fall 2007.
On 2nd January 2008, Milan became the first metropolitan area in Italy to in-
troduce a congestion charge for the city centre. The scheme aims at reducing
congestion and air pollution.
On 1st October 2008, an extension of the current charging zone around Oslo
was established to cover the suburbia Baerum west of Oslo. The new zone is
operated separately, which means that vehicles going to Oslo from the west will
be charged twice. The system is based on the existing system in Oslo, which is
fully automated. The motivation for the new charging zone is to provide capital
for the operation of the public transport in Oslo and Akershus the next twenty
years. Moreover, it will provide capital for expansion of the west corridor out of
the Norwegian capital.
Though road pricing has successfully been implemented in some countries, it has
failed in some countries due to poor public acceptance among other factors.
Hong Kong, in 1986 proposed a congestion pricing scheme which was never im-
plemented due to some factors, which include improved traffic flows and the mid
1980’s recession in Hong Kong.
Edinburgh city in 2002 decided to carry out extensive public hearings during
2003, followed by a referendum. The referendum was only meant to be guiding.
The public hearings lead to some adjustments of the design of the road pricing
system. The referendum took place in February 2005, and the result was that
74% voted “no” to introducing road pricing while only 26% voted “yes”. This
resulted in the City Council’s decision to immediately drop all plans to introduce
road pricing. Most of the planned investments will still be carried out but will
now be financed by ordinary taxes.
Though Trondheim road pricing reduced the inbound traffic by up to 10%, the
charging scheme as mentioned earlier was not operated with the intention of redu-
cing congestion but was implemented over a 15 year period in order to gain funds
largely for road investments. This period ended in 2005 and as such, Trondheim
is the first city ever to stop collecting tolls. Proposals are currently under debate
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however, even though traffic conditions have not been viewed as problematic.
New York congestion pricing was a proposed traffic congestion fee for vehicles
travelling into or within the Manhattan central business district of New York
City. The congestion pricing charge was one component of New York City Mayor
Michael Bloomberg’s plan to improve the city’s future environmental sustainab-
ility while planning for population growth, entitled PlaNYC 2030: A Greener,
Greater New York. If approved and implemented, it would have been the first
such a fee scheme enacted in the United States. The deadline to approve the
plan by the State Assembly was April 7, 2008, for the city to be eligible to re-
ceive US$ 354 million in federal assistance for traffic congestion relief and mass
transit improvements. On April 7, 2008, after a closed-door meeting, the Demo-
cratic Conference of the State Assembly decided not to vote on the proposal,
“...the opposition was so overwhelming, ...that he would not hold an open vote
of the full Assembly,” Sheldon Silver, the Assembly Speaker said. Afterwards,
the US Department of Transport (UDOT) announced that they would seek to
allocate those funds to relieve traffic congestion in other cities. Chances for the
bill to return soon to the State Assembly are considered dim, as long as Sheldon
Silver remains the Speaker.
The following countries have plans of implementing road pricing in the near fu-
ture; The Netherlands, some cities in the USA, Hong Kong, Australia, and other
cities in Britain, e.g. Bristol, Leeds, Derby, Edinburgh, Leicester, etc.
Netherlands aimed to start with freight transport in 2011. This would require
intensive technical and policy-related cooperation with Belgium, France and Ger-
many. If everything had gone as planned, then passenger cars would have followed
a year after the launch of freight transport. The complete system roll-out was
scheduled for 2016 and beyond.
Returning to the theoretical background of road pricing models, two types of
schemes exist within the field of road pricing, namely, first and second-best pricing
schemes.

2.1.3 First-best pricing scheme

First-best pricing is a tolling scheme that leads to the optimal use of the trans-
portation network in terms of system travel costs. It requires that all links be
made available for tolling. This scheme is sometimes referred to as marginal
cost pricing (MCP) for congestion. In this thesis, we define first-best pricing to
include marginal costs for other externalities like air pollution, noise pollution,
road damage and accidents. MCP on a congested transportation network dates
back to Beckmann et al. [7]. They argue that if there were a way to collect tolls
from the users of congested roads at rates that would measure the (delay) cost
an average road user inflicts on others, a better use of the highway system would
be obtained. They also added that the collected revenue should be invested back
into the transportation system or to the society so that the social cost or welfare
loss is not increased as a result of such tolls. MCP sets on each link a toll which
is equal to the difference between the marginal cost, and the average cost (see
subsection 2.1.6 below). Ferrari Paolo [21], and Yang and Huang [77] discuss the
first best congestion pricing scheme with capacity and environmental constraints.
Bergendorff et al. [8], Hearn and Ramana [23], and Yildirim et al [79] discuss
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the concept of congestion toll pricing framework using the optimality conditions.
Their result shows that, in fact, there exists an infinite number of toll vectors
that can achieve the optimal flow pattern in terms of congestion. This leads to
a redefinition of first-best congestion pricing to include not only MCP, but also
those congestion toll vectors that can be used to achieve the most efficient use of
the transportation network with respect to congestion. In this thesis, we derive
similar results for multi-objective problems.

2.1.4 Second best pricing scheme

Second-best pricing is a tolling scheme that does not assume all links to be avail-
able for tolling and allows additional constraints on the tolls. For reasons ranging
from political issues to equity concerns, it may be that some links and some user
classes are not to be tolled. Further, for time-dependent tolls (see Chapter 6), it
may be that some time intervals (usually the off-peak periods) are toll-free. When
this is the case, it may be that the system optimum flow is no longer achievable
by tolling. Then the toll vector that achieves the best possible sub-optimal flow
is called the second-best toll vector. Second-best pricing is gaining more prac-
tical grounds for the fact that it may be practically impossible to toll all roads
for its poor public acceptance, cost of setting up toll booths, political and tech-
nical reasons among others. Key questions to answer in the second-best pricing
scheme include: where to levy the toll and how much? Yang and Lam [76] model
the second-best pricing with elastic demand as a bi-level programming problem.
The upper level represents the system controller (or the decision maker) that de-
termines the tolls that optimize a given system’s performance while considering
users’ route choice behaviour. The lower level represents the users. Since the
users will always minimize their perceived cost in their route choice behaviour,
it means that the system will eventually ‘settle’ at user equilibrium. The lower
level problem, therefore, translates to finding user equilibrium flows. This bi-level
problem setting can be seen as a Stackelberg game where the system controller
is the leader, and the network users are the followers.
Verhoef [66, 69] study second best pricing with different model formulations,
but with the same bi-level approach as Yang and Lam [76]. Verhoef [66] uses
the assumption of existence of set a of relevant paths per OD. Yildirim et al
[79] arrive at the same result as Verhoef [Verhoef2000] by assuming the exist-
ence of Lagrangian multipliers for the associated Karush-Kuhn-Tucker (KKT)
conditions. Yang and Lam [76] and Verhoef [66] develop algorithms for solving
the second-best pricing problem. May et al. [37] prove the convergence of Ver-
hoef’s algorithm when applied to a small network section of the city of Leeds.
Lawphongpanich et al. [32] and Yildirim [78] formulate the second-best pricing
problem as a mathematical problem with an equilibrium constraint expressed as
variational inequality for both fixed and elastic demand. They assume the exist-
ence of Lagrangian multipliers. Lawphongpanich et al. [32] further investigate
the properties associated with the second-best pricing problem and derived an
algorithm for it. Owing to the fact that drivers may differ with respect to the
value of time and with respect to marginal impact on others, Verhoef and Small
[68] consider second-best congestion pricing with heterogeneous drivers on three
links, assuming elastic demand and a continuum values of time.
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Verhoef et al [67] look at the road pricing problem from a multidisciplinary per-
spective. Their work includes the optimal design of road pricing schemes, the
behavioural effects that may be induced among individuals and firms, and ac-
ceptability of road pricing. Olsder [46, 47] models road pricing as an inverse
Stackelberg game. A detailed study of Stackelberg and inverse Stackelberg games
with its applications, for example, in the optimal toll design and the energy mar-
ket liberalization problem can be found in [62]. The Game theoretical analogy of
road pricing is also part of their research output. All the models above depend
on the Wardropian principles.
Due to the constraint on the tolls, the upper level problem is generally solved
simultaneously with the lower level problem. This type of problem falls into a
special class of a mathematical problem called the Bi-level Programming Problem
(BLPP). The second-best pricing problem is usually formulated as a BLPP known
as Mathematical Program with Equilibrium Constraint (MPEC). MPECs are
generally hard mathematical problems, as we will see. Most existing models in
the literature have common shortcomings; firstly, they fail to explicitly define all
the externalities caused by road users, and secondly, they all assume the existence
of only one decision maker or system controller, usually the government. Both
aspects are dealt with in this thesis.

2.1.5 The Network model

In this section, we present basic notations used in this thesis. We will remind the
reader of some of the notations as they are being used, and more notations will
be added to this list as we proceed.
Let G = (N,A) be a network, with N the set of all nodes and A the set of
(directed) arcs or links in G. A trip starts at an origin node O and ends at a
destination node D. We use the following notations:

Table 2.1: Notation table

A set of all arcs (links) in G
a index for links
R set of all paths
r index for paths (routes)
W index set of all OD pairs (ow, dw), ow, dw ∈ N
w index for OD pairs
f path flow vector
fr flow on path r
v vector of link flows
va flow on link a
Γ OD-path incident matrix
Λ arc-path incident matrix
V set of feasible link flows
d travel demand vector
dw demand for the wthOD pair
Rw set of all paths connecting OD pair w
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Notation table cont.

Dw(λw) demand function for the wthOD pair
Bw(dw) inverse demand function for the wthOD pair
λw least cost to transverse the wthOD pair
K set of all actors in the road pricing game
Ck
a (v) link cost function for the kthobjective

Ck(v) total network cost function for the kthobjective
with Ck(v) = ∑

a εA
Ck
a (v)

C(v) vector of network cost functions in G
Z(v) total network cost in G. i.e. Z(v) = ∑

k εK
Ck(v)

2.1.6 Derivation of optimal first-best tolls

In this section, we will derive the optimal road pricing model also known as the
first-best tolls. We focus on the elastic demand derivation of the first-best tolls.
The derivation will be based on the a single leader or single decision maker. For
diversity, we will derive the same optimal tolls in section 3.2.1 using fixed demand
models.

Decision maker’s problem (System Problem - SP)

This is the problem statement that describes the objective of the system con-
troller. The road pricing model with elastic demand involves the simultaneous
minimization of controller’s objective (for example, travel time) and maximiza-
tion of user benefit. Therefore, the objective of the system controller to keep the
social welfare as high as possible can be stated as follows:
max [Social Welfare (or Economic Benefit)]

s.t
flow and environmental feasibility conditions

The Social Welfare is given by

SocialWelfare = UB − SC

where UB is the User Benefit, given by

UB =
∑
w∈W

dŵ

0

Bw(ς)dς

Bw(dw) is the inverse demand or benefit function for the OD pair w ∈ W [77].
Observe that UB = C when the demand is fixed.
The Social Cost (SC ) is given by

SC = C(v)

C(v) is the system cost function and can be the system travel time cost, noise
cost, emission cost, etcetera.
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In this specific derivation, we will take Ck(v) to be the travel time cost βvT t(v),
where β is the value of time (VOT), v is the vector of link flows, and t(v) is the
vector of link travel time functions.
The system problem SP can then be stated mathematically as follows (with the
dual variables as indicated at the right of the corresponding constraints):

min
v,d

Z = βvT t(v)−
∑
w∈W

dŵ

0

Bw(ς)dς s.t.

v = Λf ψ

Γf = d̄ λ
f ≥ 0 ρ
d ≥ 0 ϑ

 (FeC−ED) (2.1)

g(v) ≤ 0 ξ
}
SideConstraints

The first constraint states that the flow v on a link is equal to the sum of all path
flows f that pass through this link. The second equation is the flow-OD balance
constraint. It states that the sum of flows on all paths originating from origin
node p and ending at destination node q for an OD pair pq equals the demand
d for the OD pair w. The third and fourth inequalities simply state that the
path flows, and OD demands are non-negative. The non-negativity of link flows
follows directly from the third constraint. The fifth constraint g(v) ≤ 0 contains
possible side constraints on the link flow vector v. These constraints may be
standardization constraints, which may require:

1. That total emission on certain links does not exceed the stipulated emission
standard.

2. That total noise level on certain links does not exceed the standard allowed
dB(A) level.

3. That total number of cars using certain roads does not exceed a given
number or height or weight to preserve the pavement and prevent accidents.

(ψ, λ, ξ, ρ, ϑ) are the Karush-Kuhn-Tucker (KKT) multipliers associated with
the constraints. For simplicity, we omit the side constraints g(v) in the subsequent
formulations. The remaining constraints we call the feasibility Conditions for
Elastic Demand denoted by FeC_ED.

Assumption 1:
• We assume throughout that the link cost (or travel time) function vector
t(v) is continuous and satisfies (t(v)− t(v̄))T (v − v̄) > 0 ∀v 6= v̄, v, v̄ ∈ V
and all functions Ck(v) are continuous, strictly convex, and strictly mono-
tone (in the sense that ∂Ck(v)/∂va ≥ 0 ∀k, a), and the side constraints
g(v) ≤ 0 (see Eq.(2.1)), if used, are linear.

In the derivation below, we will take that the link travel time functions are sep-
arable, i.e. ta(v) = ta(va) for all links. Later we will generalize to a non-separable
link functions which is straightforward.
We now look into the KKT optimality conditions of problem (2.1). If we let L
be the Lagrangian, and v̄, d̄ be an optimal solution to program (2.1), then there
exist (ψ, λ, ρ, ϑ) such that the following KKT conditions hold:
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L = βvT t(v)−
∑
w∈W

dŵ

0

Bw(ς)dς + (Λf − v)Tψ + (d− Γf)Tλ− fTρ− dTϑ

∂

∂v
L = β

(
t(v̄) + v̄

d

dv
(t(v̄))

)
− ψ = 0

⇒ β

(
ta(v̄a) + v̄a

d

dva
(ta(v̄a))

)
− ψa = 0 ∀a ∈ A (2.2)

∂

∂f
L = ΛTψ − ΓTλ− ρ = 0

⇒
∑
a∈A

ψaδar − λw − ρr = 0 ∀r ∈ Rw, w ∈ W (2.3)

∂

∂ (d)L = λ−B(d̄)− ϑ = 0

⇒ λw −B(d̄w)− ϑw = 0 ∀w ∈ W (2.4)
fTρ = 0 ∀w ∈ W (2.5)

⇒ frρr = 0 ∀r ∈ R
dTϑ = 0 ∀w ∈ W (2.6)

⇒ dwϑw = 0 ∀w ∈ W
ρ, ϑ ≥ 0 i.e. ρr, ϑw ≥ 0 ∀r ∈ Rw, w ∈ W

Here ∂
∂x
f is the partial derivative of f with respect to x, and Λ = δar is a binary

parameter that equals 1 if the link a belongs to the path r and 0 otherwise.
Eqs.(2.5) and (2.6) are complementarity constraints.
Note that convexity assumption on the network cost function

(
Ck(v) = βvT t(v)

)
ensures

that the SP program in Eq.(2.1) has a unique link flow solution v̄.
Substituting Eq.(2.2) into Eq.(2.3) yields

∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
δar = λw + ρr ∀r ∈ Rw, w ∈ W (2.7)

and Eq.(2.4) into Eq.(2.7) gives
∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
δar =

(
B(d̄w) + ϑw

)
+ ρr ∀r ∈ Rw, w ∈W (2.8)

since ϑw, ρr ≥ 0, ∀r ∈ Rw, w ∈ W , Eq.(2.8) implies

∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
δar ≥ B(d̄w) ∀r ∈ Rw, ∀w ∈ W (2.9)

Interpretation: Eq.(2.9) states that the system controller would want the travel
cost of every road user to include not only the travel time cost but also the cost
of the travel time externality he causes on other users. Furthermore, it states
that this total cost should be at least equal to the benefit he (road user) enjoys
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in making the trip. In fact, the quantity βv̄∇ (t(v̄)) will turn out later to be a
feasible first-best link toll vector.
As a result of the flow conservation constraint in Eq.(2.1) and theKKT conditions,
we derive the following:Recall that v = Λf ⇐⇒ v̄a =

∑
w∈W

∑
r∈Rw

frδar ∀a εA


∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
v̄a =

∑
a∈A

∑
w∈W

∑
r∈Rw

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
frδar

=
∑
w∈W

∑
r∈Rw

fr
∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
δar

=
∑
w∈W

∑
r∈Rw

fr(λw + ρr), using Eqn 2.7

=
∑
w∈W

∑
r∈Rw

frλw +
∑
w∈W

∑
r∈Rw

frρr

=
∑
w∈W

∑
r∈Rw

frλw =
∑
w∈W

λw
∑
r∈Rw

fr, using Eqn 2.5

=
∑
w∈W

λwd̄w, using Eqn 2.1

∴
∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
v̄a =

∑
w∈W

λwd̄w (2.10)

Substituting Eq.(2.4) into Eq.(2.10) yields∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
v̄a =

∑
w∈W

(
B(d̄w) + ϑw

)
d̄w

=
∑
w∈W

B(d̄w)d̄w +
∑
w∈W

ϑwd̄w

=
∑
w∈W

B(d̄w)d̄w, using Eqn 2.7

∴
∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
v̄a =

∑
w∈W

B(d̄w)d̄w (2.11)

Interpretation: Eq.(2.11) states that, for optimal societal benefit, total cost
incurred in the system by the travellers should be equal to the total benefit they
enjoy.
We thus summarize below the necessary and sufficient condition for the flow
pattern(v̄, d̄) to be optimal:

∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
δar ≥ B(d̄w) ∀r ∈ Rw, w ∈ W

∑
a∈A

(
βta(v̄a) + βv̄a

d

dva
(ta(v̄a))

)
v̄a =

∑
w∈W

B(d̄w)d̄w
(2.12)

Thus the following are equivalent:
1. KKT optimality conditions of problem (2.1)
2. Eq.(2.12) together with the FeC_ED
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(Road) User Problem - UP

Without loss of generality, we assume that a road user only considers the costs
and the benefits he enjoys making a trip. In this way, the only determinant of
user’s route choice behaviour is the travel costs and benefits of a trip. We use
Beckmann’s formulation [7] of Wardrop’s user equilibrium to describe the users’
behaviour mathematically. The formulation shown below is a convex program
since the travel time cost functions are assumed to be separable and monotonic,
and the benefit function, monotonically increasing:second-best toll

min
v,d

∑
a∈A

vâ

0

βta(u)du−
∑
w∈W

dŵ

0

Bw(ς)dς

s.t (2.13)
FC−ED

Remark
It is well known that the objective in (2.13) can be mathematically formulated
as a variational inequality [77]. It was shown in [77] that a flow pattern (v∗, d∗)
is in user equilibrium if and only if it solves the following variational inequality
problem:

βt(v∗)T (v − v∗)−B (d∗)T (d− d∗) ≥ 0 ∀v ∈ V (2.14)

Any solution (v∗, d∗) of the above variational inequality is UE flow pattern [77].
Thus, rewriting the user problem (2.13), we seek for a user equilibrium flow
vectors v∗, d∗ such that it solves the following problem

min
v,d

(
βt(v∗)T (v − v∗)−B (d∗)T (d− d∗)

)
s.t

FeC−ED

Given that (v∗, d∗) solves the UP above, then, following the same lines of argu-
ments in the previous section on the analysis of the KKT optimality conditions,
we arrive at the following results:

∑
a∈A

βta(v∗a)δar ≥ B(d∗w) ∀r ∈ Rw,∀w ∈ W∑
a∈A

βta(v∗a)v∗a =
∑
w∈W

B(d∗w)d∗w
(2.15)

In fact, the following are equivalent:
1. KKT optimality conditions of problem (2.13)
2. Eq.(2.15) together with the FeC_ED
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Interpretation: The first line of Eq.(2.15) confirms the Wardrop’s first principle,
stating that at equilibrium, no user will increase his welfare (or benefits) by
unilaterally changing his route or by deciding to or not to travel. The second line
is the travel cost-benefit balance equation.
Notice that the only difference between the result of optimality conditions of SP
(Eq.(2.12)) and that of the user problem UP (Eq.(2.15)) is the absence of the
term βv̄a

d
dva

(ta(v̄a)) in Eq.(2.15). Therefore, the following are equivalent:
1. (v̄, d̄) solves the SP
2. β

(
t(v̄) + v̄a

d
dva

(ta(v̄a))
)T

(v − v̄)−B
(
d̄
)T (

d− d̄
)
≥ 0 ∀v ∈ V

by perturbing the link cost function βta(va) by +βva d
dva

(ta(va))
∣∣∣
v̄a
∀a ∈ A, the

optimality results in Eq.(2.15) for the user problem become exactly the same
as those in Eq.(2.12). So, by charging each user of link a, a toll equal to
βv̄a

d
dva

(ta(v̄a)), for all links in the network, the users’ route choice behaviour
will result in the system optimal flow pattern v̄ of system (2.1).
Therefore, by charging each user of link a, a toll equal to βv̄a d

dva
(ta(v̄a)) , con-

gestion cost imposed on other users by this single user is now “internalized”,
and in this way, each user faces the marginal societal cost in his route choice
behaviour.
In what follows, we describe the flexibility of the tolling scheme with the help of
Equations (2.12) and (2.15).

Corollary 1. Suppose (v̄, d̄) is the system optimal flow pattern for the SP, then,
by utilizing Eqs.(2.12) and (2.15), any toll vector θ (other than βv̄a d

dva
(ta(v̄a))),

whose element θa is the toll on link a, satisfying the following set of linear con-
ditions will also induce the system optimal flow vector v̄ as a user equilibrium
flow: ∑

a∈A
(βta(v̄a) + θa) δar ≥ B(d̄w) ∀r ∈ Rw,∀w ∈ W∑

a∈A
(βta(v̄a) + θa) v̄a =

∑
w∈W

B(d̄w)d̄w
(2.16)

which we can condense in matrix form as

ΛT (βt(v̄) + θ) ≥ ΓTB(d̄)
(βt(v̄) + θ)T v̄ = B(d̄)T d̄ EqC−ED (2.17)

Here, as before Λ denotes the arc-path incident matrix and Γ denotes the OD-
path incident matrix for the network. The acronym EqC_ED reads equilibrium
constraint for elastic demand. Now compare Eq.(2.16) and Eq.(2.12) and notice
that we have only replaced the fixed vector βv̄a d

dva
(ta(v̄a)) with a (variable) vector

θ.
Observe from Eq.(2.17) that

θT v̄ = B(d̄)T d̄− βt(v̄)T v̄ (2.18)

The RHS of Eq.(2.18) is a constant for all first price vectors θ. This shows that,
when demand is elastic, then, the total toll revenue collected in a network is
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constant no matter the toll vector used [79, 78]. It further shows that though the
link tolls are not unique, it is not possible that a link toll may be infinitely large
as in the case of a fixed demand model (see Chapter 4 for an elaborate study on
toll bounds)
Note that the marginal congestion cost pricing (MCCP) toll vector βv̄T∇t(v)
whose element βv̄a d

dva
(ta(v̄a)) is the toll for link a is valid for Eq.(2.16)

When demand is fixed, we will later see in section 3.2.1 that Eq.(2.17) becomes

ΛT (βt(v̄) + θ) ≥ ΓTλ
(βt(v̄) + θ)T v̄ = (d̄)Tλ

EqC−FD (2.19)

where λ is a free scalar representing the minimum route travel cost for a given OD
pair. The acronym EqC−FD reads equilibrium constraint for fixed demand.
Remark: With the aid of Equation (2.16), the following secondary objectives on
the nature of the tolls can be readily defined: minimizing the total toll revenue,
setting the tolls collected to a specific amount (when demand is fixed), minimizing
the number of toll booths, and minimizing the maximum link toll over all links.
To summarize, we state below the algorithm that implements the first-best pricing
scheme.

Algorithm for First Best Pricing scheme with Elastic Demand

1. Solve the system problem SP (2.1) to get the desired optimal link flow
vector v̄ and corresponding OD demand vector d̄.

2. Find any toll vector θ satisfying EqC_ED (Eq.(2.16) or (2.17)) with sec-
ondary objectives on tolls if necessary.

3. Update the travel cost on link a to include θa, ∀a ∈ A.
In the foregoing, we have assumed that there is the possibility of tolling every link.
As mentioned earlier, this type of tolling scheme is the so called first-best pricing.
In practice, it may be infeasible to toll all road segments, to this, a pricing scheme
which does not necessarily put tolls on all links has been proposed and studied
in the past. It is the so called second-best pricing scheme. Below we discus this
scheme.

2.1.7 Second-best toll problem formulation

In practice, it is very unlikely that all links and all users are tolled at all time
periods of the day. This may be due to political reasons, poor acceptance rate,
cost of implementation, etcetera. It is in view of this that the so called second-
best pricing is gaining more practical grounds than the first-best counterpart.
In second-best pricing, the system optimum as achieved in program (2.1) is no
longer guaranteed. On the other hand, it may be that a first-best toll is feasible
for the second-best scheme, then, in that case, the first-best toll is a solution
for the second-best scheme. In general, we do not expect the first-best tolls
to coincide with the second-best tolls due to the restriction on tolls. If such a
coincidence does not occur, the system problem is solved simultaneously with the
user problem in order to determine the best toll for the societal welfare.



22 Chapter 2. Theoretical background

Thus, the second-best pricing problem can be stated in words as follows:

max (the Social Welfare or Economic Benefit)
s.t

The flows and demands are feasible
The flows and demands are in (tolled) user equilibrium

Possible conditions on tolls

Algorithm for Second Best Pricing scheme with Elastic Demand

Given that Y is the set of links in the network that cannot be tolled, formally,
the following describes the steps involved in implementing the second-best tolls
when demand is elastic.

1. Solve the system problem SP ((2.1)) to obtain the optimal flow pattern
(v̄, d̄).

2. Find the solution set F containing any social toll vector θ satisfying the
equilibrium condition EqC_ED (Eq.(2.16)) and the extra conditions on
tolls.

3. Check if F is empty, if NO, GOTO step 4 to compute the corresponding
first-best social tolls, else GOTO step 5 to compute the second-best social
tolls.

4. The vector θ computed in step 2 is the first-best social toll vector. Update
the link cost function to βta(va)+θa; ∀a ∈ A where θ satisfies all conditions
on tolls.

5. STOP.
6. By possibly using v̄, d̄ as the initial flow vectors, solve the following “bi-

level” toll pricing problem:

min
v,d,θ

Z = C(v)− ∑
w∈W

dẃ

0
Bw(ς)dς

s.t

FeC_ED (see Eqn 2.1) (2.20)
EqC_ED (see Eqn 2.16)
θa = 0 ∀a ∈ Y

The objective maximizes the system’s welfare which is the controller’s aim. The
first two constraints ensure that the flow resulting from the above system is a
feasible user equilibrium flow pattern. The last constraint ensures the feasibility
of the toll pattern. The formulation in step could be seen as a mathematical
program with equilibrium constraint. The equilibrium constraint though, has
been transformed to constraints that ensure user equilibrium using the KKT
optimality condition. Since the program above has a non-linear constraint (see
Eq.(2.16) with v̄ free), the entire problem is non-convex. The algorithm above
has a unique solution in v if the system (SP) and the user (UP) problems have
unique solutions. This unique solution may be difficult to achieve by non linear
optimization tools though.
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Note that if system problem SP (system (2.1)) and user problem UP (system
(2.13)) have solutions (v̄, d̄) and (v∗, d∗) respectively and the functions t(v) and
B(d) are continuous and monotonic or linear in v and d respectively, then, the
second-best algorithm in step 1-5 above has a solution (ṽ, d̃) with the objective
value

Z̃ = Ck(ṽ)−
∑
w∈W

d̃ŵ

0

Bw(ς)dς

in the interval∑
k∈K

Ck(v̄)−
∑
w∈W

d̄ŵ

0

Bw(ς)dς ,
∑
k∈K

Ck(v∗)−
∑
w∈W

d∗ŵ

0

Bw(ς)dς


provided the derivatives (∇t(v),∇B(d)) exist. The argument is very easy to see
since if the algorithm terminates in step 4, then the feasible flow pattern is the
same as the system optimum flow pattern (SP) and the total system cost is Z̄
(i.e Z̃ = Z̄) which is the best one can get. On the other hand, if the algorithm
does not terminate in step 4, then, the program in step 5 is solved. Note that
solution to the user problem UP with objective value Z∗ is a feasible solution of
the program in step 5 (i.e with θa = 0; ∀a ∈ A). Search for a better solution will
force some link tolls θa ∀a ∈ A\Y to be non zero, that is Z∗ ≥ Z̃. Therefore, Z̃ is
bounded below by Z̄ and above by Z∗, or

Z̄ ≤ Z̃ ≤ Z∗

2.1.8 Traffic assignment and marginal congestion pricing with
non-separable link travel time functions

In the above formulations, we assumed that the link travel time functions are
separable, i.e., ta(v) = ta(va). Such assumption is not always realistic. There
are some cases where flow interactions must be considered, for example, the
heavy traffic on two-way streets, the un-signalized intersections, and left-turn
movements at signalized intersections. Now, we want to relax the assumption and
generalize the condition to non-separable link travel time functions. In this case,
the travel time function for a given link a is a function of link flows on all network
links due to link flow interactions, i.e., ta(v) = ta(· · · , va, · · · ), a ∈ A. Two types
of link flow interactions may arise, namely, symmetric and asymmetric link flow
interactions (see [77]). For asymmetric link flow interactions, characterized by

∂ta(v)
∂vb

6= ∂tb(v)
∂va

, for some a, b ∈ A, a 6= b

then, the variational inequality (VI) as formulated in Eq.(2.14) solves the User
Problem with ta(v) = ta(· · · , va, · · · ), a ∈ A. The solutions to the KKT optimality
conditions for the VI exist because the functions ta(v) are continuous and the
feasible set V is compact. Further, the VI has a unique solution since ta(v)
satisfies the conditions given in Assumption 1.
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On the other hand, symmetric link flow interactions are characterized by

∂ta(v)
∂vb

= ∂tb(v)
∂va

, ∀a, b ∈ A, a 6= b

This means that the marginal effect on one link’s travel time (say link a) inflicted
by another link’s flow (say link b ) is equal to the marginal effect on link b’s
travel time inflicted by link a’s flow. An equivalent mathematical program that
can generate a User Equilibrium flow pattern can be constructed as follows (see
[77]):

min
v,d

v̂

0

βt(u)du−
∑
w∈W

dŵ

0

Bw(ς)dς

The marginal congestion cost pricing (MCCP) toll with separable case is now
given by

θa =
∑
b∈A

βvb
∂tb(v)
∂va

∣∣∣∣∣∣
v=v̄

a ∈ A (2.21)

where v̄ = (· · · , v̄a, · · · ) in Eq.(2.21) is the optimum solution to the system prob-
lem (Eq.(2.1)) with link flow interactions, i.e., ta(v) = ta(· · · , va, · · · ), a ∈ A.
Eq.(2.21) is the marginal cost inflicted on all network users due to one extra user
of link a. To achieve the system optimal flow v̄, every user of link a is required
to pay the amount present in Eq.(2.21).
Note that the statements of Corollary 1 and the second-best pricing model are all
valid for the non-separable link travel time functions with ta(v) = ta(· · · , va, · · · ),
a ∈ A.
It is important to note that, though the convexity assumption on the link travel
time functions for a separable case ensures that the SP program in Eq.(2.1) has
a unique link flow solution v̄, it is not the case for the non-separable link travel
time function. In fact, to ensure a unique SP solution v̄ in Eq.(2.1) for a special
case of symmetric link flow interactions (see [77]), the following conditions must
be met:

1. The travel time on each link is an increasing and convex function of the
flow on that link, that is

∂ta(v)
∂va

> 0, ∂
2ta(v)
∂v2

a

> 0, a ∈ A

2. The main dependency of a link’s travel time in on its own flow.

∂ta(v)
∂va

>
∑

b∈A,b6=a

∂ta(v)
∂vb

For the asymmetric case, we need that the Hessian of the SP is positive definite
which is difficult to establish. Consequently, non-separable link travel time func-
tions may lead to a sub-optimal and/or non-unique SP solutions. This is in fact
a draw back of using such models.
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2.2 Traffic externalities of conflicting nature

2.2.1 Traffic externalities

Over the years, many countries have implemented the so called congestion pricing
schemes. Following the positive results of such schemes on congestion, they have
also claimed that the societal welfare in general has also been positively affected.
In the literature, many spacial economists have used a function that considers
only the travel time and the user’s benefit to optimize the social welfare in the
transportation sector. Many have over time neglected the impact of other traffic
externalities such as air pollution, noise pollution, traffic safety and pavement
damage among others on the social welfare. Road pricing that neglects these
other externalities can lead to a bizarre network situation. In other words, a
good road pricing model that maximizes social or economic welfare must involve
not only the simultaneous minimization of travel time and users’ dis-benefits,
but also minimization of road accident, road damage, noise and air pollution and
others. To capture almost all the damages a network user causes other users, the
environment, residents and the future generations, we will henceforth incorporate
in our models the most important traffic externalities in the definition of the social
welfare.

Emissions
Air pollution is the introduction of chemicals, particulate matter, or biological
materials that cause harm or discomfort to humans or other living organisms,
or damage the natural environment, into the atmosphere. Though it is always
difficult for all countries around the world to agree on a common project, the issue
of climate change is an exceptional case. Everyone agrees that our climate must be
protected. Due to technological advancement and human actions, our climate and
environment deteriorate every second of the day. The negative effects of human
actions on the environment as well as on humans include; global warming, ozone
depletion, smog, haze, invisibility, acid rain, respiratory problems, eye irritation,
restlessness and discomfort among others.
A greenhouse gas, carbon dioxide (CO2), though vital for living organisms, is
one of the major causes of global warming and the so called acid rain. It traps
the heat emitted by the earth’s surface thus increasing the temperature of our
environment. When it reacts with atmospheric water vapour or simply water, a
very weak acid called carbonic acid (trioxocarbonate (iv) acid) is formed. This
weak acid (though unstable) can slightly increase the acidity of an unpolluted
rain.
Carbon monoxide (CO) is a colourless poisonous gas which forms a stable com-
pound with haemoglobin in the blood when inhaled by living things. This causes
a reduction in the oxygen transportation from the lungs to the body cells. High
concentration of CO can increase the risk of cardiovascular problems and impede
the psychomotor functions.
An organic compound methane (CH4) is one of the three main compounds that
causes global warming besides CO2 and water vapour (H2O (g)).
Sulphur oxides (SOx) when dissolved in atmospheric water vapour or rain cause
acid rain. They also cause lung irritation.
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Some nitrogen oxides (NOx) compounds are toxic. They cause eutrophication
(nutrient overload in water bodies), contribute towards the formation of smog,
and are known to be ground level ozone precursors. These toxic oxides of nitrogen
also cause ill health in humans and other animals, and these include: decrease
in pulmonary function, inflammation of the lungs and immunological changes.
Reaction of NO2 with water droplets results in nitric acid (HNO3) which again,
causes acid rain.

Volatile organic compounds (V OCs) are one of the major causes of aerosols.
They are very dangerous to health, and they are also known to be a precursor
to the formation of ground level ozone. When NOx reacts with VOCs, ozone O3
is released. Ozone, which is beneficial in the upper atmosphere where it protects
the Earth by filtering out ultraviolet radiation, has been identified as one of the
leading causes of chronic respiratory diseases when found at ground level. Eye
inflammation has over time been associated with ground level ozone.

Particulate matters PMs are solid particles suspended in the atmosphere. They
include; re-suspended road dust, smoke, and liquid droplets. PMs can cause
chronic and acute bronchitis, lung cancer, chest illness and chronic respiratory
diseases when inhaled.

The presence of NOx, PM10, SO2, CO, CO2, O3, VOC (HC ), and lead (Pb) in
the atmosphere has extremely been associated with road traffic;

NOx are formed when fuel is burned at high pressure and temperature conditions.
This induces the dissociation and subsequent recombination of atmospheric ni-
trogen (N2) and oxygen (O2), a reaction that generates NOx.

PM10 are released into the atmosphere from so many sources. Brake pads and
tires of motor vehicles are examples of such sources. Reaction of gases (e.g.
NOx, SO2, and NH3) from burning fuel with atmospheric water vapour leads
to suspension of particulate matter in the atmosphere. Solid carbons leaving
the exhaust pipes of vehicles in the form of smoke, constitute part of the solid
particles seen in the atmosphere.

SOx are one of the principal emissions from diesel engines.

CO is released into the atmosphere when fuel combustion is incomplete. Reaction
between CO and atmospheric oxygen releases CO2 into the atmosphere. In The
Netherlands, it has been noted that traffic and transportation are responsible for
approximately 20% of the emitted CO2. CO2 emission is proportional to the
vehicle’s fuel consumption rate, which in turn, depends on the smoothness of the
traffic flow [74].

V OCs (HC) can either be released into the atmosphere as a by-product of in-
complete fuel combustion or as a vapour due to fuel evaporation.

Photochemical reactions which involve principally nitrogen oxides (NOx), oxygen
(O2), and hydrocarbons HCs, in the presence of sunlight release (ground level)
ozone (O3) into the atmosphere.

Most fuels contain lead compounds to prevent knocking in the engine. When
these fuels burn, the lead compounds are released into the atmosphere. Lead
compounds when inhaled can be very injurious to health.
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Noise pollution
Noise pollution is defined to be an annoying and potentially harmful environ-
mental noise. It can be as a result of factory machines or road traffic among
others. Road traffic noise results from two main factors; propulsion noise and
tyre/road noise (rolling noise). Factors that influence the sound pressure level are
traffic volume, speed, traffic composition (vehicle types), road design (i.e. slopes,
crossings, speed bumps) and reflection, absorption and dispersion (i.e. road sur-
face, walls, trees) [74]. The adverse effects of traffic noise include; annoyance,
disturbance, high blood pressure, certain cardiovascular diseases, limited mental
illness, lethal heart attack and restlessness. These effects are already recognised
by the world health organisation (WHO) as serious health problems on humans.
Research has proven that sounds above 55dB are potentially dangerous to health
[17]. In 2000, it was recorded that more than 44% of the EU251 population (about
210 million people) were regularly exposed to road traffic noise level of over 55dB
[17], a level, as stated above, that is dangerous to health. Research reveals that
three quarters of Dutch houses experience a cumulative sound pressure of over
50dB [74]. It might be interesting to note that, the social costs of traffic noise
in the EU222 amount to at least €40 billion per year (0.4% of total GDP). The
bulk of these costs (about 90%) is caused by passenger cars and lorries [17].

Traffic safety
Road traffic accident is increasing a subject of concern in most cities around
the world. It has become an urgent point of attention for the government as
well as individuals since it involves immediate loss of life and severe injuries.
Amazingly, it is also a major concern for insurance companies who seek for less
frequent accident occurrence since this would translate to making more profit. As
stated in [74], traffic safety can be discussed under three subjects; objective and
subjective traffic safety, and external safety. Objective safety quantifies the traffic
safety. It divides the actual number of crashes into fatal, injuries (combined with
casualties) and material damages. Factors influencing objective traffic safety
include; human (e.g. use of alcohol and high speed), vehicle type (e.g. mass
differences), and thirdly, the road type/design. Full description of other subjects
can be seen in [74].
Though the number of death and/or injury as a result of road accidents is on
the increase in most countries, it may be worth mentioning that despite the
increase in traffic volume, an EU country, The Netherlands (together with others)
is becoming increasingly safer over the past years. The trend that describes the
number of injuries per year in The Netherlands is steeply approaching ‘zero’ [74].

Road damage
Road pavements are built according to specifications. Factors that determine
the type of a pavement include; geographical location and feasibility, type of
vehicles that use the pavement, and financial availability among others. When
heavy vehicles start using roads meant for small cars, then, it is very likely that
the pavements start to dilapidate. The adverse effects of this road dilapidation
range from the high cost of repair to road accidents. Annoyance and discomfort

1EU25 refers to EU27 except Cyprus and Malta.
2EU22 refers to EU27 except Cyprus, Estonia, Latvia, Lithuania and Malta.
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to users are also results of dilapidated roads. When the traffic flow keeps ex-
ceeding the construction strength or the capacity of a pavement, the pavement
also starts to crumble. This means that even when road pavements are used
according to vehicle specifications, dense traffic can pose a serious danger to the
durability of roads. Loads, which are the vehicle forces exerted on the pave-
ments, can be characterized by tire loads, axle and tire configurations, vehicle
speed, traffic distribution across the pavement and load repetition. Tire loads
are the forces exerted due to tire-pavement contact. Axle and tire configuration
describes how many tire contact points on a pavement, and how close they are
to each other. When tires are close to each other, the pressure exerted per pave-
ment area is increased. Slow and steady vehicles tend to create more damage
to pavements. So, reducing traffic congestion will help preserve pavements to
some extent. Since continuous heavy traffic on a road segment will cause this
road segment to deteriorate, good traffic distribution is necessary to preserve our
costly infrastructures. In this thesis, we define the pavement structural design
by quantifying all expected loads a pavement will encounter over its design life.
We do this by using the equivalent single axle loads ESAL which converts the
wheel loads of various magnitudes and repetitions, to an equivalent number of
standard (or equivalent) loads based on the amount of damage they cause to the
pavement. The commonly used standard load is the 18,000lb equivalent single
axle load. As a rule of thumb, the load equivalent factor LEF of each vehicle
(and also the pavement/infrastructure damage imparted by each vehicle) can be
roughly determined from

(
vehicleweight(lb)

18,000

)4
[52].

Since the man-hour is precious, and the cost of road maintenance and health
care very high, it means that huge amount of money is being lost every single
second from the effects of road traffic externalities. Knowing all these, we can
confidently say that minimizing the mentioned effects would translate to reducing
huge costs for both users and non users of the road, for the government and
for organizations like insurance companies, and above all, protecting our planet
Earth, and preserving it for yet unborn generations. To achieve this aim, we must
put into consideration all the mentioned effects and search for a way to minimize
the cost generated by each effect. A closer look tells one that we are already
confronted with a multi-objective problem, and this leads to the introduction of
a multi-objective problem in the next subsection.

2.2.2 Multi-objective optimization and its meaning

Most real life optimization problems require the simultaneous optimization of
more than one objective function. This is because many of these problems are
defined in many objectives. In most cases, these objectives are in conflict with
each other and may or may not be equally important. Examples of realistic
optimization problems that involve more than one objective function include the
following:

1. In the bridge construction, a good design is characterized by low total mass
and high stiffness.

2. Most aircraft designs require simultaneous optimization of fuel efficiency,
payload and weight.
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3. A good road pricing model that maximizes social or economic welfare must
involve the simultaneous minimization of travel time, noise and air pollu-
tion, road accident, road damage and maximization of user benefit.

4. An acceptable/fair road pricing scheme must include (usually) conflicting
interests of various stakeholders and the road users.

5. The traditional portfolio optimization problem attempts to simultaneously
minimize the risk and maximize the fiscal return.

6. In chemical design, or in the design of a ground water bioremediation fa-
cility, objectives to look out for include total investment and net operating
costs.

7. In car manufacturing industries, two objectives; minimization of the noise
a driver hears and maximization of ventilation are used to define a good
sun roof design.

8. In logistics and supply chain, a good scheduling of truck routing minimizes
dead head miles while equalizing the work load among drivers.

9. An optimization problem in radiation therapy planning always aims at min-
imizing radiation dose on the normal tissues while maximizing dose on the
tumour regions.

In these and many other cases, it is unlikely that the different objectives would
be optimized by the same alternative parameter choice. This means that some
trade-offs are needed between criteria to ensure a satisfactory model. Solving
a multi-objective problem often results in a multitude of solutions, and not all
these solutions are of interest [36]. For a solution to be interesting, there exist a
dominance relation between the solution considered and the other solutions. We
say that a solution vector v̄ dominates another solution vector v∗ if:
v̄ is at least as good as v∗ for all objectives, and
v̄ is strictly better than v∗ for at least one objective.
In general, a multi-objective problem has no optimal solution that could optimize
all objectives simultaneously since these objectives are conflicting. But there ex-
ists a set of non-dominant or non-inferior or equally efficient alternative solutions,
known as the Pareto optimal set. A Pareto optimal solution has the property that
it is not possible to reduce any of the objective functions without increasing at
least one of the other objective functions.

Definition
If for objective k ∈ K, Ck(v) denotes the cost or objective function (to be min-
imized), then a solution vector v̄ ∈ V dominates a solution vector v ∈ V if and
only if the following holds:

Ck(v̄) ≤ Ck (v) ∀k ∈ K and
Cj(v̄) < Cj(v) for at least one j ∈ K

the solution v̄ ∈ V is Pareto optimal if there does not exist any other solution
vector v ∈ V that dominates v̄.
The line that connects the set of all Pareto points (sometimes called efficient
points) to a multi-objective optimization problem is called the Pareto or efficient



30 Chapter 2. Theoretical background

frontier [34]. Next we turn our attention to the multi-objective theory of road
pricing and the mentioned conflicting externalities.

2.2.3 Traffic externalities and multi-objective optimization of road
pricing

We state again that road tolls/pricing is a well accepted technique in transporta-
tion economics to combat traffic externalities such as congestion, emission, noise,
safety issues, etcetera. The road pricing problem is to determine how much toll
to place and on which link such that traffic is efficiently distributed in a given
network. Efficiency is used here to mean traffic pattern that optimizes the ex-
ternalities of interest. Due to the conflicting nature of these externalities, a road
pricing scheme that checks congestion, for example, may hugely increase the
emission of gases into the atmosphere, and allow vehicles to use the urban/inland
(shorter) road which may endanger the safety of residents in the form of acci-
dents and inhalation of poisonous exhaust gases, and even further dilapidates the
pavements. On the other hand, a road pricing scheme that promotes safety may
lead to “slow” moving vehicles or assignment of all vehicles to the safest route,
and this of course will result in a heavily congested route which in turn leads to
huge man-hour loss in congestion, and again, pavement dilapidation. Further-
more, a pricing scheme that reduces noise will channel traffic to non residential
roads, and this may lead to under utilization of urban/inland roads while other
roads are heavily loaded with vehicles. Recall that road dilapidation is enhanced
by congestion, so heavy loaded roads decay faster. The story of the conflicting
nature of the traffic externalities is that when you try to minimize the cost of one
externality, then the cost of two or more others is on the increase.
As we mentioned earlier, there does not exist a flow vector v that absolutely
optimizes all objectives simultaneously, otherwise, there is no need to solve the
problem with multiple objectives. Our aim in this thesis, therefore, is to find a
satisfactory and acceptable trade off between the objectives. Starting with the
first-best pricing scheme, we will extend our results to the second-best pricing
scheme. Let us first look at the objectives and how the ‘optimal’ solutions can be
obtained, and later on, we will show how these ‘optimal’ solutions can be achieved
on road networks using tolls.
Here we have a look at some concepts from multi-objective optimization. One
possible solution concept is to compute some Pareto points and see how these
points are reflected in objective values.
Define v∗k to be the optimal flow vector of objective k. This means that Ck(v∗k) is
the optimal value (in the absolute sense) of objective k. We will call v∗k the ideal
vector point of objective k, and Ck(v∗k), the ideal objective value of objective k,
and C∗, the ideal objective vector containing all ideal objective values. Observe
that for any objective k ∈ K, we have that v∗k 6= v∗j for at least one objective
j ∈ K, where k 6= j, otherwise, the objectives would not be in conflict with
one another. Ck(v∗k) will serve as the lower bound for objective k. Since a
multitude of feasible Pareto optimal solutions is obtained in a multi-objective
optimization problem, the question is, which of these solutions will be chosen?
This decision depends solely on the choice of the decision maker (dm). As some
objectives may be more important to the dm than others, the solutions more
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favourable to less important objectives are discarded and solutions favourable to
more important objectives are selected for further analysis. The judgement of
which solution to choose among the remaining or equally important objectives is
always a challenging task. This is because, in Pareto sense, no solution is better
than the other. It may be possible for the decision maker to define a utility or
value function to enable him evaluate or quantify the trade-offs or the objective
values [36]. If an explicit utility function can be constructed, then, the objectives
can be aggregated into one criterion, and in this way, the multi-objective problem
reduces to a single objective problem. The definition of a good value or utility
function is very difficult in practice though. No matter the valuation of the dm,
for efficiency/optimality reasons, the final accepted solution should be a point on
the Pareto frontier.
Let us first assume that we have only one decision maker, say the central gov-
ernment. Without loss of generality, we assume that the dm wants to keep as
low as possible the costs of total system travel time, emission, noise, safety, and
road damage. Decrease in travel time as we stated earlier encourages the use of
short inland roads at high speeds, but these translate not only to high emission
and noise in the urban areas but also endanger the safety of inhabitants and the
motorists. Since these objectives are conflicting, it means that it is not possible
to find a feasible flow vector v∗ that results in ideal objective value for all the
objectives simultaneously. We will then seek a feasible flow pattern (or vector) v̄
that is as close as possible to the interest of the dm. Since all our objectives are
monetized, and for the fact that the dm’s sole interest is to minimize the entire
network cost, give no objective function preference over the other. Since the ef-
ficient solution points for the multi-objective problem are all on Pareto frontier,
any choice for one solution point that favours one objective may lead to increase
in the cost of another objective value. This move may or may not decrease the
entire network cost. We then seek a flow vector v̄ on the Pareto frontier that
minimizes the total network cost.
The dm’s objective to keep the gap (with respect to the ideal value) as small
as possible for each k ∈ K, and his intention to minimize the total trade off
translate to one aim; minimizing the entire network costs. This leads to the
following objective formulation:

min
vk

∑
k∈K

wk
(
Ck(vk)− Ck(v∗k)

)
s.t

v ∈ V

(2.22)

where wk ∈ R is the weight of the objective k and Ck(v∗k) is the ideal objective
value of objective k. For our problem, wk = ω ∀k ∈ K assuming that we scaled
the various costs according to their monetary value.
The objective tends to minimize the gap between objective value and the ideal
objective value for all objectives. By the summation, system (2.22) minimizes
the sum of the trade off, and thus ensuring that the trade-offs made between
objectives result in a minimum system cost. Another look at (2.22) reveals that
the formulation is simply minimizing the entire network costs. Since all dominant
solutions lie on the Pareto frontier. The above problem is Pareto optimal. The
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proof is similar to the ones given in [36].
System (2.22) translates to a weighted sum method of multi-objective optimiz-
ation. The weighted methods have a shortcoming of not being able to find all
the Pareto optimal solutions of non-convex problems. The objective functions
studied in this thesis are either convex or linear in v, thus, the feasible objective
space is convex.
Remark
An important feature of a multi-objective problem is the connectedness of the
sets of Pareto optimal and weakly Pareto optimal solutions. It is often useful
to know how well one can move continuously from one Pareto optimal solution
to another. Steuer [64] proves that the Pareto optimal set of a multi-objective
optimization is connected when the objectives are linear. Warburton [71] proves
the connectedness of Pareto optimal set for a convex case.

2.2.4 Single-leader multi-objective road pricing model

If we assume that a single leader or a stakeholder sets toll on the transportation
network with the aim of minimizing the cost arising from the aforementioned ex-
ternalities in the form of multiple objectives, then as stated earlier, this decision
maker is faced with an option of choosing a point on the Pareto frontier. Assum-
ing we monetize all externalities, then, for equity reasons (equal weights on all
objectives), the redefined multi-objective version of system Eq.(2.1) to keep the
total system monetary cost as low as possible is given as

(MO) : min
v,d

Z =
∑
k∈K

Ck(v)−
∑
w∈W

dŵ

0

Bw(ς)dς

s.t

v = Λf [ψ]
Γf = d [λ] (2.23)
f ≥ 0 [ρ]
d ≥ 0 [ϑ]

g(v) ≤ 0 [ξ]

The user problem remains as given in subsection 2.1.6. Let v̄ be the solution
of MO, then the results in subsections 2.1.6 and 2.1.7 are still valid with the
marginal congestion cost pricing (MCCP) βv̄a d

dva
(ta(v̄a)) for link a as given in

Eq.(2.12) being replaced by

Qa =
[
βva

d

dva
(ta(v̄a)) + αa

d

dva
(ea(v̄a)) + γ

d

dva
(na(v̄a)) + d

dva
(ia(v̄a)) + %

d

dva
(sa(v̄a))

]
(2.24)

Here ta(va) is the travel time cost function on link a, ea(va) is the emission
cost function on link a, na(va) is the noise cost function on link a, ia(va) is
the infrastructure-damage cost function on link a, and sa(va) is the safety cost
function on link a. Further, β is the monetary value of time per minute (VOT),
αa is the monetary value of emission per gramme for link a which depends on
the urbanization (among other factors), γ is the monetary equivalent of 1dB(A)
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defined for a certain noise level, and % is the ‘average’ monetary cost of an injury
crash.
For the first-best pricing scheme, instead of charging theMCCP term βv̄a

d
dva

(ta(v̄a))
on link a, the termQa in Eq.(2.24) is charged. We call termQa the marginal social
cost pricing (MSCP) term. The terms in Eq.(2.24) is interpreted as follows:
βva

d
dva

(ta(v̄a)) is the additional travel cost imposed on all existing users of link a
by an additional user of this link.
αa

d
dva

(ea(v̄a)) is the additional cost to the environment due to emission caused
by an additional user of link a.
γ d
dva

(na(v̄a)) is the additional cost on the society due to increase in noise level
caused by an additional user of link a.
d
dva

(ia(v̄a)) is the cost for the road damaged caused by a single car using link a.
% d
dva

(sa(v̄a)) is the cost for the increase in risk level on link a due to an additional
user of this link.
Thus, by charging each user of link a, a toll equal to Qa, all the costs imposed
on other users, on the environment, and on the society by a single user may now
be internalized. In this way therefore, each user faces the marginal societal cost
in his route choice behaviour. Such behaviour, we claim, leads to optimal use of
the system.
It is worthwhile noting that the one-objective road pricing, or specifically marginal
congestion cost pricing MCCP, which considers only travel time and compels the
users towards the desired flow, is a special case of the model above.
As discussed in section 2.1.8, if we now assume a non-separable link cost functions
such that there are link flow interactions, then the generalized form of Eq.(2.24)
is given as:

Qa =
[∑
b∈A

βvb
∂tb(v̄)
∂va

+
∑
b∈A

αa
∂eb(v̄)
∂va

+
∑
b∈A

γ
∂nb(v̄)
∂va

+
∑
b∈A

∂ib(v̄)
∂va

+
∑
b∈A

%
∂sb(v̄)
∂va

]
(2.25)

where v̄ = (· · · , v̄a, · · · ) in Eq.(2.25) is the optimum solution to the system prob-
lem (Eq.(2.23)) with link flow interactions, i.e., ta(v) = ta(· · · , va, · · · ), a ∈ A.
Hence, Qa is the total traffic externality cost inflicted on the entire network by a
single user of link a.

2.3 Conflicting interests of stakeholders

Even with its rich potentials of alleviating most of our traffic worries, road pricing
has suffered setbacks when it comes to practical implementation of the scheme.
One major setback is suffered due to political reasons - where involving parties
and stakeholders who decide on road pricing schemes have different objectives
(mostly conflicting) that they want the proposed scheme to offer. The other
main setback is due to poor public acceptance of the scheme - road users always
perceive themselves as passive instead of active players when debates on road
pricing or decisions take place. Specifically, for example, insurance companies
would solicit for a toll pattern that minimizes road accidents and have little or no
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interest in congestion, whereas the Ministry of Economics may be interested in
minimizing man-hour loss in the traffic to boost productivity. On the other hand,
environmentalists would lobby for a pricing scheme that limits traffic emissions
while showing little interest on other externalities. Still more, one region within
a country may set tolls to optimally distribute traffic on her regional network
irrespective of the flow pattern and/or the tolling scheme of other regions. These
optimal regional tolls may unfavourably affect traffic flows in both near and far
away regions. We will see later in Chapter 3 that our stakeholders’ model can
easily be transformed into a model involving regions of different interest.

2.4 Game theoretical approach

Following subsection 2.3.1, it is now clear that every stakeholder and all regions
would want their voice be heard during the toll setting. Another look tells one
that we are facing a natural game where each player has an objective which may
be in conflict with other players’ objective. A player’s aim would be to push/lobby
as hard as he can to achieve the best for himself. In such a model where more than
one stakeholder or decision maker controls the affairs of road pricing, then the
concept of Nash equilibrium [40] from economics presents a suitable model. In the
Nash equilibrium game, players play in turns to improve their individual utilities
(while obeying the rules of the game) until none of the players can improve his
current outcome. Due to the fascinating nature of the road pricing game, I am
almost being tempted to start describing the whole game procedure here, see you
in Chapter 3 for the full description of the game!

2.5 Summary and conclusion

In this chapter, we have given a detailed review of road pricing, its implementa-
tions and setbacks. We described and mathematically formulated two main road
pricing schemes, namely, first-best and second-best pricing schemes. We further
derived a flexible tolling system for the two schemes. Major traffic externalities
were introduced in this chapter together with their effects on humans and a de-
scription of their conflicting nature when represented in terms of objectives. The
notion of multi-objective optimization was introduced, and few solution methods
were described. The chapter concludes by classifying our multi-objective problem
to a group of games we call multi-objective games and proposed a Nash equilib-
rium solution approach, an approach that had not been considered before in road
pricing.
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Bi-level multi-stakeholder multi-objective
optimization model

In Chapter 2, we discussed a one leader road pricing problem where the leader
concentrates on just one objective, or group of objectives described in one utility
function. In subsection 2.2.4 of that chapter, we described a model that extends
the single objective road pricing model to models of multiple objectives handled by
a single leader or actor. Such models have their shortcomings; when one decision
maker (dm), (e.g. the government or a private road owner) controls the traffic
flow of a transportation system through road pricing, then it is likely that some
other stakeholders affected by activities of transportation may not be happy with
the decisions made by this dm. This is because when the dm models the multi-
objective (MO) road pricing problem, all traffic externalities are simultaneously
considered with or without preference for any externality (see MO Eq.(2.23)).
When preference is given, say, to congestion, then the effect of the preferred
externality subdues the effect of other externalities, and this may translate to
huge costs for some objectives (or stakeholders). For example, lower travel time
(say high speeds) may translate to more accidents (costs for insurance companies).
Even without preference to any externality, it is intuitive that stakeholders still
will prefer to partake in toll setting to protect their interests. The main problem of
a classical approach from multi-objective optimization is the following: supposing
that each stakeholder can influence the toll setting, why should an independent
player accept a situation which he can improve (his objective) by changing the
tolls?
In such a situation, the classical concept of Nash equilibrium in game theory
presents an appropriate alternative model. Such models are accepted in econom-
ics in situations where independent players may influence the market with their
strategies in order to optimize their specific objective.
The question we would like to address from a game theoretical/economic point of
view is: What happens when each stakeholder optimizes his objective by tolling
the same network, given that other stakeholders are doing the same? Formally,
we introduce the mathematical and economic theory behind the model.

3.1 Mathematical and economic theory

The mathematical program with equilibrium condition (Eq.(2.20)) described in
Chapter 2 is a Stackelberg game where a leader or dm (at the upper level) moves
first, followed by sequential moves of other players (road users). If we assume
that various stakeholders are allowed to propose a toll (or at least influence the
tolls) for a network, then users are influenced not only by just one leader as in
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Stackelberg games, but by the actions of more than one decision maker. In a
multi-leader-multi-follower game, the leaders take decisions (search for toll vec-
tors θk, k ∈ K, that optimize their individual objectives) at the upper level
which influence the followers (users) at the lower level. The followers then react
accordingly (user/Wardrop’s equilibrium), which in turn may cause the leaders
to update their individual decisions leading to lower level players reactions again.
These updates continue until a stable situation is reached. A stable state is
reached if no stakeholder can improve his objective by unilaterally changing his
proposed toll. Note, however, that given the stable state decision tolls of leaders,
the lower level stable situation is given by the (unique) Wardrop’s equilibrium.
So the bi-level game can be seen as a single (upper) level game with additional
equilibrium conditions (for the lower level - see Eq.(2.20)).
In the above non-cooperative scenario, each actor solves a program with equilib-
rium conditions, which is influenced by other actors’ programs with equilibrium
conditions, and this translates to an equilibrium problem subject to an equilibrium
condition. Since a stable state upper level tolls will lead to a (unique) Wardrop’s
equilibrium in the lower level, our aim, therefore, is to find a Nash toll vector for
the leaders (see figure 3.1).
After settling on a Nash toll vector, users represented in the upper level may
search for an alternative but lower toll vector using Equation (2.17) or (2.19).
Notice from figure 3.1 that we have represented the interests of road user in the
upper and the same level as other stakeholders, thus making them active players
in the toll setting game. This type of formulation, we hope, will go a long way to
promote public acceptance of road pricing since they (users) now have a stake-
holder on the “discussion table”.
Remark: The theory described above does not necessarily mean that stakehold-
ers have different toll collecting machines on the links, no, our model describes
the Nash toll vector that can be reached during policy making or debate when
stakeholders or autonomous regions/states choose not to form a grand coalition.

Figure 3.1: Multi-leader-Multi-follower Nash/Cooperative game model

3.2 Multi-stakeholder multi-objective road pricing model

We devote this subsection to the derivation of the game models we will use in
the remainder of this thesis. In the model, we will mathematically describe the
interaction between actors in the upper level and the interaction between road
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users in the lower level. Further, we will model the interaction between upper
and lower level players in the form of a game.

3.2.1 Derivation of the pricing model for one stakeholder game

In subsection 2.1.6, we derived first-best and second-best flexible pricing schemes
for elastic demand models. In this subsection, we will turn our attention to
fixed demand models. In the fixed demand model, it is assumed that demands as
read from the input origin-destination (OD) matrix are fixed during the modelling
period. We will describe mathematically what each stakeholder does in the upper
level game between the stakeholders, and what each road user does in the lower
level game among the road users. The models are very much similar to the
ones described in the subsection 2.1.6. With a knowledge of the derivation in
subsection 2.1.6, the reader can go straight to section 3.2.2.

Stakeholders’ model (upper-level)

Given that we have |K| stakeholders, then a stakeholder k ∈ K does nothing than
optimizing his objective Ck(vk) which depends on the traffic flow vector v (see
Assumption 1 in subsection 2.1.6). The Eq.(2.1) equivalent for the fixed demand
model for player k ∈ K is

(SPk) : min
vk

Zk = Ck(vk)
s.t

vk = Λfk
[
ψk
]

Γfk = d̄
[
λk
]

(3.1)

fk ≥ 0
[
ρk
]

The constraints are the flow feasibility conditions as described in Eq.(2.1). The
bar ”−” on the demand d signifies that d is fixed.
As in subsection 2.1.6,

(
ψk, λk, ρk

)
are the KKT multipliers associated with the

constraints. We will refer to constraints of system (3.1) as the Feasibility Con-
ditions for Fixed Demand denoted by FeC_FD.
Recall Assumption 1 in subsection 2.1.6:

• We assume throughout that the link cost (or travel time) function vector
t(v) is continuous and satisfies (t(v)− t(v̄))T (v − v̄) > 0 ∀v 6= v̄, v, v̄ ∈ V
and all functions Ck(v) are continuous, strictly convex, and strictly mono-
tone (in the sense that ∂Ck(v)/∂va ≥ 0 ∀k, a), and the side constraints
g(v) ≤ 0 (see Eq.(2.1)), if used, are linear.

If Assumption 1 holds for system (3.1), we now analyse the KKT optimality
conditions of system (3.1) assuming a separable cost functions. If we let L be
the Lagrangian, and v̄k be the solution of the above program, then, there exists(
ψk, λk, ρk

)
such that the following KKT conditions hold:
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L =
∑
a∈A

Ck
a (vka) + (Λfk − vk)Tψk + (d̄− Γfk)Tλk −

(
fk
)T
ρk

∂

∂vka
L = d

dvka

(
Ck
a (v̄ka)

)
− ψka = 0 ∀a ∈ A (3.2)

∂

∂fk
L = ΛTψk − ΓTλk − ρk = 0

⇒
∑
a∈A

ψkaδar − λkw − ρkr = 0 ∀r εRw, w ∈ W (3.3)
(
fk
)T
ρk = 0 ∀w ∈ W (3.4)
⇒ fkr ρ

k
r = 0 ∀r ∈ R

ρk ≥ 0 OR ρkr ≥ 0 ∀r ∈ Rw, w ∈ W

Where ∂
∂x

is the partial derivative with respect to x, and Λ = δar is a binary
parameter that equals 1 if link a belongs to a path r and 0 otherwise. We have
used vk to denote the link flow vector for stakeholder k ∈ K with elements vka
representing the link flows. Eq.(3.4) is the complementarity condition.
Substituting Eq.(3.2) into Eq.(3.3) yields

∑
a∈A

(
d

dvka

(
Ck
a (v̄ka)

))
δar = λkw + ρkr ∀r ∈ Rw, w ∈ W (3.5)

since ρkr ≥ 0, ∀r ∈ Rw, w ∈ W , (3.5) reduces to

∑
a∈A

(
d

dvka

(
Ck
a (v̄ka)

))
δar ≥ λkw ∀r ∈ Rw, ∀w ∈ W (3.6)

As a result of the flow conservation constraint in Eq.(3.1), we derive the follow-
ing:

From Eqn 3.1 we have vk = Λfk

⇒ v̄ka =
∑
w∈W

∑
r∈Rw

fkr δar ∀a εA

∑
a∈A

(
d

dvka

(
Ck
a (v̄ka)

))
v̄ka =

∑
a∈A

∑
w∈W

∑
r∈Rw

(
d

dvka

(
Ck
a (v̄ka)

))
fkr δar

=
∑
w∈W

∑
r∈Rw

fkr
∑
a∈A

(
d

dvka

(
Ck
a (v̄ka)

))
δar

=
∑
w∈W

∑
r∈Rw

fkr (λkw + ρkr), using Eqn 3.5

=
∑
w∈W

∑
r∈Rw

fkr λ
k
w +

∑
w∈W

∑
r∈Rw

fkr ρ
k
r

=
∑
w∈W

∑
r∈Rw

fkr λ
k
w =

∑
w∈W

λkw
∑
r∈Rw

fkr , using Eqn 3.4

=
∑
w∈W

λkwd̄w, using Eqn 3.1

∴
∑
a∈A

(
d

dvka

(
Ck
a (v̄ka)

))
v̄ka =

∑
w∈W

λkwd̄w (3.7)
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To summarize, a feasible flow vector v̄k is a (unique) solution of SPk if and only
if with a vector λk the following holds:

∑
a∈A

(
d

dvka

(
Ck
a (v̄ka)

))
δar ≥ λkw ∀r ∈ Rw, w ∈ W

∑
a∈A

(
d

dvka

(
Ck
a (v̄ka)

))
v̄ka =

∑
w∈W

λkwd̄w

(3.8)

Where d
dvka

(
Ck
a (v̄ka)

)
is the total cost incurred by actor k on link a due to a single

user on this link. Note that for a specific case where Ck(vk) = βvT t(v), the total
system travel time cost, then Eq.(3.8) becomes

∑
a∈A

(
βta(v̄ka) + βv̄a

d

dvka
(ta(v̄a))

)
δar ≥ λkw ∀r ∈ Rw, w ∈ W

∑
a∈A

(
βta(v̄ka) + βv̄ak

d

dvka

(
ta(v̄ka)

))
v̄ka =

∑
w∈W

λkwd̄w

(3.9)

Observe from Eq.(3.9) that the cost incurred by actor k on link a is in two parts:
the travel cost of a single user on link a, βta(v̄ka), and d

dvka

(
Ck
a (v̄ka)

)
- the travel

cost imposed on all other users of link a by a single user of link a. Eq.(3.9) is the
fixed demand version of Eq.(2.12).

Road users’ model (lower-level)

As formulated in subsection 2.1.6, the user equilibrium problem for fixed demand
is given by the following program: Find v∗ ∈ V such that v∗ is a solution of

min
v

(
βt(v∗)Tv

)
s.t

v = Λf ψ

Γf = d̄ λ (3.10)
f ≥ 0 ρ

(ψ, λ, ρ) are the KKT multipliers associated with the constraints.
Again, let Assumption 1 hold for (3.10), then, we analyse the KKT optimality
conditions for system (3.10). If we let L be the Lagrangian, and v∗ be the solution
of the above program, then, there exists (ψ, λ, ρ) such that the following KKT
conditions hold:
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L =
∑
a∈A

βta(v∗a)Tva + (Λf − v)Tψ + (d̄− Γf)Tλ− fTρ

∂

∂va
L = βta(v∗a)− ψa = 0 ∀a ∈ A (3.11)

∂

∂f
L = ΛTψ − ΓTλ− ρ = 0

⇒
∑
a∈A

ψaδar − λw − ρr = 0 ∀r εRw, w ∈ W (3.12)

fTρ = 0 ∀w ∈ W (3.13)
⇒ frρr = 0 ∀r ∈ R

ρ ≥ 0 OR ρr ≥ 0 ∀r ∈ Rw, w ∈ W

All notations remain as previously defined.

Substituting Eq.(3.11) into Eq.(3.12) yields

∑
a∈A

(βta(v∗a)) δar = λw + ρr ∀r ∈ Rw, w ∈ W (3.14)

Given that a path r ∈ Rw has a positive flow, then Eq.(3.14) reduces to

∑
a∈A

(βta(v∗a)) δar = λw ∀fr > 0, r ∈ Rw, w ∈ W (3.15)

due to the complementarity condition in Eq.(3.13).

Interpretation: Eq.(3.15) states that at equilibrium, the travel costs on all used
paths r ∈ Rw in a traffic network for a given origin-destination pair w ∈ W are
the same and equal to the parameter λw.

Furthermore, since ρr ≥ 0, ∀r ∈ Rw, w ∈ W , from Eq.(3.14), the following holds
in general

∑
a∈A

(βta(v∗a)) δar ≥ λw ∀r ∈ Rw, ∀w ∈ W (3.16)

Interpretation: From Eq.(3.15) and (3.16) we thus conclude that at equilibrium,
the travel costs on all used paths for a given OD pair are the same and less or
equal to the parameter λw. This is the so called Wardrop’s first principle, thus,
any flow vector v∗ that solves system (3.10) is indeed a user equilibrium flow
vector.
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From Eqn 3.10 we have v = Λf
⇒ v∗a =

∑
w∈W

∑
r∈Rw

frδar ∀a εA
∑
a εA

(βta(v∗a)) v∗a =
∑
a εA

∑
w εW

∑
r∈Rw

(βta(v∗a)) frδar

=
∑
w∈W

∑
r∈Rw

fr
∑
a∈A

(βta(v∗a)) δar

=
∑
w∈W

∑
r∈Rw

fr(λw + ρr), using Eqn 3.14

=
∑
w∈W

∑
r∈Rw

frλw +
∑
w∈W

∑
r∈Rw

frρr

=
∑
w∈W

∑
r∈Rw

frλw =
∑
w∈W

λw
∑
r∈Rw

fr, using Eqn 3.13

=
∑
w∈W

λwd̄w, using the second constraint of 3.10

∴
∑
a∈A

(βta(v∗a)) v∗a =
∑
w∈W

λwd̄w (3.17)

To summarize, a vector v∗ ∈ V is a solution of (3.10) if and only if with a vector
λk the following holds:

∑
a∈A

(βta(v∗a)) δar ≥ λw ∀r ∈ Rw, w ∈ W∑
a∈A

(βta(v∗a)) v∗a =
∑
w∈W

λwd̄w
(3.18)

Once again, Eq.(3.18) is an equilibrium condition with v∗ the equilibrated flow
pattern.
Comparing Eqs.(3.8) and (3.18) reveals that each stakeholder k ∈ K would want
to achieve his ideal flow link flow vector v̄k by setting a link toll θka given by

βta(v̄ka) + θka = d

dvka

(
Ck
a (v̄ka)

)
or θka = d

dvka

(
Ck
a (v̄ka)

)
− βta(v̄ka) (3.19)

Note that the link toll in Eq.(3.19) can be negative, meaning that stakeholders
may have to give sort of incentives or utilities to road users in order to achieve
the flow vector v̄k. In most cases, giving out utilities in the form of money or
incentives is more or less, practically infeasible. In the next chapter, we will show
that it is still possible to achieve the flow vector v̄k with a positive toll vector θk,
in fact, it turned out that there exists an infinite number of positive toll vector θk
that can be used to achieve the flow vector vk for stakeholder k. Thus we state
the following corollary:
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Corollary 2. Suppose v̄k is the system optimal flow pattern for stakeholder k in
the stakeholder’s model (Eq.(3.1)), then, by utilizing Eqs.(3.8) and (3.18), any
toll vector θk (other than d

dvk

(
Ck(v̄k)

)
− βt(v̄k)), whose element θka is actor k′s

toll on link a, satisfying the following set of linear conditions will also induce the
system optimal flow vector v̄k as a user equilibrium flow vector:

∑
a∈A

(
βta(v̄ka) + θka

)
δar ≥ λkw ∀r εRw,∀w εW∑

a∈A

(
βta(v̄ka) + θka

)
v̄ka =

∑
w∈W

λkwd̄w
(3.20)

which we can condense in matrix form as

ΛT
(
βt(v̄k) + θk

)
≥ ΓTλk(

βt(v̄k) + θk
)T
v̄k = (d̄)Tλk

(3.21)

Where Λ denotes the arc-path incident matrix and Γ denotes the OD-path incid-
ent matrix for the network. λ is a free variable representing the minimum route
travel cost vector for the ODs.
Proof: The proof follows from the KKT optimality condition analysis in subsec-
tion 3.2.1. �

Henceforth, we will call any toll vector θk satisfying Eq.(3.20) a first-best toll
vector for actor k.

3.2.2 Mathematical model for the multi-stakeholder bi-level Nash
equilibrium game

We now introduce mathematically the toll pricing game and the concept of Nash
equilibrium (NE) Nash [40], Nisan et al. [41] as described in subsection 3.1. Nash
equilibrium is a solution concept of non-cooperative game involving more than
one player in which no player has an incentive to deviate from his or her chosen
strategy after considering an opponent’s choice. Overall, an individual can receive
no incremental benefit from changing actions, assuming other players remain con-
stant in their strategies.
Assume that Assumption 1 (subsection 2.1.6) holds, so in particular the Ward-
rop’s equilibrium (WE) v is unique. Let θk be the link toll vector of player k ∈ K,
and let θ−k denote a vector with all tolls in K\k, i.e. θ−k = (θj, j ∈ K\k). In
the Nash game, for given θ̄−k, the kth stakeholder tries to find a solution toll θ̄k
for the following problem:

Ψk(θ̄k, θ̄−k) = min
θk

Ψk(θk, θ̄−k)

where for given θk(and θ̄−k)
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Ψk(θk, θ̄−k) : = min
vk

Zk = Ck(vk)
s.t

ΛT

(
βt(vk) + θk + ∑

j εK\k
θ̄j
)
≥ ΓTλk(

βt(vk) + θk + ∑
j εK\k

θ̄j
)T

vk = d̄Tλk
and

vk = Λfk
Γfk = d̄
fk ≥ 0

(θk ≥ 0)

(3.22)

For an elastic demand model where user actors and users take into account the
consumer surplus, then system (3.22) is equivalent to:

Ψk(θk, θ̄−k) := min
vk
Zk = Ck(vk)− γk

∑
w∈W

dkŵ

0

Bw(ς)dς s.t

ΛT

(
βt(vk) + θk + ∑

j∈K\k
θ̄j
)
≥ ΓTB(dk)(

βt(vk) + θk + ∑
j∈K\k

θ̄j
)T

vk = B(dk)Tdk
and

vk = Λfk
Γfk = d
fk ≥ 0

(θk ≥ 0)

The factor γk defines how much of the user benefit is considered in actor k’s
objective. The last condition on tolls

(
θk ≥ 0

)
is necessary if the tolls are required

to be non-negative.
A pure Nash equilibrium (NE) defines a situation where for all k it holds that: for
fixed strategies θ̄−k of the opposing players, the best that player k can do is to stick
to his own toll θ̄k. A NE is thus a set of strategies/toll vectors θ̄ = (θ̄k, k ∈ K)
such that for each player k the following holds:

Ψk(θ̄k, θ̄−k) ≤ Ψk(θk, θ̄−k) for all feasible tolls θk (3.23)

Observe that in the optimization problem above, each leader k can only change
his own link toll vector θk. The strategies θ̄j, j 6= k of the other leaders are fixed
in the k′s problem. The left hand constraints are the equilibrium conditions (see
Eqs.(3.8) and (3.18)) and the right ones are the feasibility conditions.

3.3 Summary and conclusion

In this chapter, we have introduced and modelled a game theoretical approach to
multi-objective optimization. Specifically, we have modelled road pricing game
involving multiple actors in which each actor controls a traffic externality or
objective that conflicts other actors’ externalities/objectives. We derived the
pricing schemes for all actors and defined the conditions for a Nash equilibrium.
In the next chapter, we will describe the solution concepts of the approach.
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Chapter 4

Solution concepts

Recall that we defined our road pricing game to be a game where various stake-
holders and/or regions with different (and usually conflicting) objectives com-
pete for toll setting in a given transportation network in order to satisfy their
individual objectives or interests. In this chapter, we investigate classical game
theoretical solution concepts for the road pricing game. We establish results for
the road pricing game (discussed in subsection 3.1) so that stakeholders and/or
regions confronted with such a game will know beforehand what is obtainable.
This will save time and argument, and above all, get rid of the feelings of unfair-
ness among the competing actors and road users. Among the classical solution
concepts we investigate is Nash equilibrium. We show that the existence of a
Nash equilibrium is not guaranteed in the game. In particular, we show that no
pure Nash equilibrium exists among the actors, and further illustrate that even
“mixed Nash equilibrium” may not be achieved in the road pricing game. The
chapter also demonstrates the type of coalitions that are not only reachable, but
also stable and profitable for the competing actors.

4.1 Existence of Nash equilibrium

4.1.1 Introduction

In game theory, it is often interesting to know if Nash equilibrium (NE) exists
for non-cooperative games, and how to find it if it exists. Further, it will also be
appealing to know if coalitions leave the players better off. In our road pricing
game, NE translates to a tolling pattern that is stable among the stakeholders.
Stability is used to mean a toll pattern where no stakeholder can improve his
objective by changing his toll strategy given other players’ toll pattern. If we
can find a Nash toll pattern, then stakeholders can be presented with such a toll
pattern since this will save them from time consuming debates and feelings of
unfairness. Before we continue, we recall

Assumption 1 (in Chapter 2):
• We assume throughout that the link cost (or travel time) function vector
t(v) is continuous and satisfies (t(v)− t(v̄))T (v − v̄) > 0 ∀v 6= v̄, v, v̄ ∈ V
and all functions Ck(v) are continuous, strictly convex, and strictly mono-
tone (in the sense that ∂Ck(v)/∂va ≥ 0 ∀k, a), and the side constraints
g(v) ≤ 0 (see Eq.(2.1)), if used, are linear.

In this subsection, we investigate the existence of Nash equilibrium (NE) in our
tolling game. We show below that this simple standard Nash equilibrium concept
as described in the preceding Chapter (see Eqs.3.22 and 3.23) is not always ap-

45
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plicable to the tolling problem. The main reason lies in the special structure of
the problems Ψk(θ̄k, θ̄−k) in (3.22) leading to the following fact:
Fact: Due to Assumption 1, for given vectors θ̄k, k ∈ K the corresponding solu-
tion (v̄, λ̄) of the system (3.22) (i.e., user equilibrium with respect to the costs[
βt(v) +∑

j εK θ̄
j
]
) is unique. Therefore:

Assertion: If θ̄ is a Nash equilibrium toll vector, then all corresponding solution
vectors

(
v̄k, λ̄k

)
are identical for all actors, hence

(v̄k, λ̄k) = (v̄, λ̄), k ∈ K. (4.1)

Proof: Given that θ̄k solves problem (3.22) for all actors k ∈ K, then it means
that at Nash equilibrium, the link toll vector θ̄ is given by θ̄ = ∑

k∈K
θ̄k, where

θ̄a = ∑
k∈K

θ̄ka, ∀a ∈ A. Due to Assumption 1, this toll vector θ̄ yields a unique

flow pattern v̄ and unique minimum route cost λ̄. Of course, the users do not
differentiate the tolls (per actor k), what they experience is the total toll vec-
tor θ̄, and as such, the vector θ̄ (together with the travel time costs) determ-
ines the unique user/Wardrop’s equilibrium flow v̄ and unique cost λ̄ for the
system. �

4.1.2 Unrestricted toll values

From the relation (4.1) we can directly deduce the following result.
Corollary 3. Suppose the leaders can toll all links with no restrictions (no
constraint θk ≥ 0 in (Eq.(3.22))), then, for the tolling game, there does not exist
a Nash equilibrium in general. Moreover, for this game, there is no stable coalition
among players.
Proof : Recall that (by Eq.(4.1)) the vector (v̄, λ̄) are the same for all actors at
Nash equilibrium.
Assume that the actors’ toll vector θ̄ is a Nash equilibrium toll with (v̄, λ̄, θ̄k) the
solution of player k. Under the fact that at least one of the players, say player `,
has a different ideal (or optimal) link flow ṽ` in SPk (see Eq.(3.1)) since players
are assumed to have conflicting objectives, and by our discussion in subsection
3.2.1 (see Eq.(3.19)), player ` can achieve this flow (ṽ`) in Ψ`(θ̃`, θ̄−`) by choosing
e.g., the first-best pricing toll

θ̃` = ∇C`(ṽ`)− βt(ṽ`)−
∑

k∈K\`
θ̄k (4.2)

Since at any turn of the game (assuming now it is player `’s turn to play), player
` can toll θ̃` as in (4.2) leading to his ideal flow ṽ` in SP` (Eq.(3.1)), clearly no
Nash equilibrium can be reached. Furthermore, since every actor ` can find a
feasible θ̃` as in (4.2), then there is no stable coalition among players since each
actor k ∈ K can always achieve SPk on his own. �

The same clearly holds for the case of elastic demand. Note that a link component
of the toll vector θ̃` given in (4.2) may be negative. In the next subsection, we
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show that the result of Corollary 3 can be achieved even with restriction to
non-negative tolls.

4.1.3 Restricted toll values

Corollary 4. Even under the extra conditions θk ≥ 0 in Eq.(3.22), there does
not exist a Nash equilibrium in general.
Proof: For a fixed demand model, we can always achieve a first-best pricing toll
in Eq.(3.20) satisfying θ̃` ≥ 0: To see this, note that any leader ` ∈ K has the
following valid toll vectors as part of a whole polyhedron (see proof below) that
achieve the ideal flow vector ṽ` in system (3.1) for leader `:

θ̃` =
[
α
(
∇C`(ṽ`)

)
− βt(ṽ`)

]
−

∑
k∈K\`

θ̄k; where α > 0 (4.3)

By making α large enough (in view that C` is strictly monotonically increasing -
see Assumption 1 ) we can assure θ̃` ≥ 0. Again as in Corollary 3, at any point
in the game, a player, say player `, can toll θ̃` as in (4.3) leading to his ideal
flow ṽ` in SP` (Eq.(3.1)), clearly no Nash equilibrium can be reached even with
θ̃` ≥ 0. �

Proof of (4.3): Suppose ṽ` is an ideal flow vector that solves (3.1) for player `.
Let θ` be the corresponding toll vector satisfying (3.21). By using the variational
inequality transformation of the user equilibrium problem UE [77] - see (2.14) in
subsection 2.1.6, it means that ṽ` is a solution of the UP

min
v`

(
βt(ṽ`) + θ`

)T
v` s.t. v ∈ V

where βt(v) is a vector of link travel time functions. Obviously ṽ` also solves the
following UP:

min
v`

α
(
βt(ṽ`) + θ`

)T
v` s.t. v ∈ V where α > 0

but,

α
(
βt(ṽ`) + θ`

)T
v` =

((
βt(ṽ`) + θ`

)
+ (α− 1)

(
βt(ṽ`) + θ`

))T
v`

=
(
βt(ṽ`) +

[
θ` + (α− 1)

(
βt(ṽ`) + θ`

)])T
v`

this means that with θ`, any vector

θ̃` =
[
θ` + (α− 1)

(
βt(ṽ`) + θ`

)]
= α

(
βt(ṽ`) + θ`

)
− βt(ṽ)

is a valid toll vector as well. Recall that for one objective C`, the marginal social
cost (MSC) toll given by Eq.(3.19)

θ` = ∇C`(ṽ`)− βt(ṽ`)

is one toll vector that achieves the ideal flow vector ṽ`, therefore

θ̃` = α
(
βt(ṽ`) + θ`

)
− βt(ṽ`) = α

(
βt(ṽ`) +

(
∇C`(ṽ`)− βt(ṽ`)

))
− βt(ṽ`)

= α
(
∇C`(ṽ`)

)
− βt(ṽ`)
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In the presence of other actors’ toll ∑
kεK\`

θ̄k, θ̃` now becomes

θ̃` = α
(
∇C`(ṽ)

)
− βt(ṽ)−

∑
k∈K\`

θ̄k; where α > 0 �

Equation (4.3) suggests that the tolls could grow infinitely large as a result of
actors’ move to achieve their ideal or optimal objective values (see the example on
the non-existence of NE in chapter 4 subsection 4.3.1). Such a high toll, though
theoretically possible due to fixed demand, is, in fact, not realistic since high tolls
may discourage some users from travelling or at least make them change their
mode of transportation. This phenomenon is captured when demand is allowed
to be elastic; when tolls are restricted to be non-negative, and demand assumed
elastic, a very high toll pattern implies that OD demands will near zero, which
in turn lowers the societal welfare or economic benefit of the actors as described
in the actors’ objectives (see for example, the objective of system (2.1)). Further,
from Eq.(2.17), we have that for any given flow pattern (v̂, d̂), the total network
toll is given by

θT v̂ = B(d̂)T d̂− βt(v̂)

revealing that the link toll vector θ is bounded. Note that the boundedness of
the tolls in elastic demand does not guarantee the existence of Nash equilibrium
(see Braess example below).
We emphasize that extra restrictions on the tolls θk may play in favour of the
existence of a Nash equilibrium as we will demonstrate with examples.
In general, what can we say about the existence of NE? A well-known theorem
in game theory [65] states that a game has a Nash equilibrium if the following
conditions are met:

• the strategy sets for each player are compact and convex, and
• each player’s cost function Ψk(θk, θ̄−k) is continuous and quasi-convex in

his strategy θk.
However, in general, we cannot expect such a convexity property. Even the mostly
used “system optimization” function, the travel time function, is in general not
convex as we will show with an illustrative example (see Braess network example
below).
Since we do not expect a Nash equilibrium to exist in general for the road pricing
game, it means that in practice, rational stakeholders or actors may never reach an
agreement on a given toll pattern. This may be an indication why road pricing,
even with its rich potentials in alleviating a lot of traffic externalities, is still
unpopular among stakeholders and road users. In most countries, like the United
States (New York City in 2008) and The Netherlands (in 2011), the road pricing
scheme was almost at implementation stages when the parliament withdrew the
idea due to conflicts of interests.
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4.2 Numerical examples I

4.2.1 The Braess network example

We use a well-known network to show that even the total network travel time
(as an objective), in general, may not be convex in the tolls (strategy set). Such
a drawback may lead to non-existence of Nash equilibrium in the road pricing
game [65] (see our example below). The yellow labels in figure 4.1 are the unique
link identities, numbering the links from 1 to 5. The other labels are the costs a
user encounters by using the links (for example, v2 for link 2 and v4 − 0.5v2

4 for
link 4, where vi is the flow on link i). The fixed demand from node a to node d
is 1. θi ∈ [0, 1] represents the toll on link i where θi = 0, for i 6= 1, 3. We have
grouped all possible tolls into two classes, namely ; θ3 ≤ θ1 and θ3 ≥ θ1 , and
derive the following user equilibrated flows vi on the links:

3

Figure 4.1: The Braess’ network

for θ3 ≤ θ1

if θ3 ≤ 0.5, then v1 = v5 = 0, v2 = v3 = v4 = 1
if θ3 ≥ 0.5, then v1 = 0, v2 = 1, v3 = v4 = 1− (1 + 2(θ3 − 1))1/2,

v5 = (1 + 2(θ3 − 1))1/2

for θ3 ≥ θ1

if θ3 ≤ 0.5, then v1 = (θ3 − θ1), v2 = v3 = 1− (θ3 − θ1), v4 = 1, v5 = 0
if θ3 ≥ 0.5

v1 =

(θ3 − θ1) if (θ3 − θ1) ≤ 1− (1 + 2(θ3 − 1))1/2

2− 2(0.5 + 0.5θ1)1/2 otherwise

v2 =

1− (θ3 − θ1) if (θ3 − θ1) ≤ 1− (1 + 2(θ3 − 1))1/2

2(0.5 + 0.5θ1)1/2 − 1 otherwise
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v3 =

1− (1 + 2(θ3 − 1))1/2 − (θ3 − θ1) if (θ3 − θ1) ≤ 1− (1 + 2(θ3 − 1))1/2

0 otherwise

v4 =

1− (1 + 2(θ3 − 1))1/2 if (θ3 − θ1) ≤ 1− (1 + 2(θ3 − 1))1/2

2− 2(0.5 + 0.5θ1)1/2 otherwise

v5 =

(1 + 2(θ3 − 1))1/2 if (θ3 − θ1) ≤ 1− (1 + 2(θ3 − 1))1/2

2(0.5 + 0.5θ1)1/2 − 1 otherwise

Let the tolls now satisfy θ3 ≥ θ1 and θ3 ≥ 0.5 and (θ3−θ1) ≤ 1− (1+2(θ3−1))1/2,
then the system travel time function vT t(v) is given by:

vT t(v) = v(θ)T t(v(θ)) = 1.5− (θ3−θ1)+(θ3−θ1)2 +0.5(1+2(θ3−1))1/2−0.5(1+
2(θ3 − 1)) + 0.5(1 + 2(θ3 − 1))3/2.

Note that we follow the traditional way of modelling travel time function in which
the tolls are not optimized in vT t(v), so, for example, the travel time for the object
vT t(v) on link 1 is v1(1 + 0) = v1, and that of link 3 is v3 ·0 = 0. We assume that
the tolls are returned back into the transportation system so as not to increase
transportation costs.
The Hessian of the travel time (TT) function vT t(θ) is given by

HTT =

 2 −2

−2 2 + 3
2(1 + 2(θ3 − 1))−(1/2) − 1

2(1 + 2(θ3 − 1))−(3/2)



The major determinant of this matrix is negative if θ3 ∈
(

1
2 ,

2
3

)
, thus, we conclude

that the travel time function vT t(v) is in general not convex in the strategy set
{θ1, θ3}. So, we do not guarantee the existence of a Nash equilibrium for the road
pricing game. This non-convexity property does not change even when other
players’ objectives are convex in their strategy sets [65]. In fact, this example is
simply to illustrate that the existence of Nash equilibrium of the road pricing game
may also depend on how the objectives of optimization are defined. Furthermore,
the example reveals that though bounding the tolls (as we claimed earlier) may
help the game converge to a Nash equilibrium, it is, in fact, not sufficient for the
Nash convergence.

4.2.2 Two-node network example

In this subsection, we bound the tolls and use a simple example to illustrate how
changes in cost functions (on the same network) affect the existence of Nash equi-
librium (NE). We further demonstrate that the existence of NE may be sensitive
to the constant operational cost of the toll booths.
In this example, we consider a network of two links; a and b, and two actors; actor
I and actor II. Actors are respectively interested in minimizing two different types
of “traffic” costs CI and CII for the network. We use χI and χII to describe the
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link cost (negative utility) functions for the “traffic” costs CI and CII respectively.
We also denote by OC the operational cost for a toll booth.

χI =



χIa =
2va if θIa = 0

2va +OC otherwise
for link a

χIb =
2.5vb if θIb = 0

2.5vb +OC otherwise
for link b

χII =



χIIa =
2va + 2 if θIIa = 0

2va + 2 +OC otherwise
for link a

χIIb =
3vb if θIIb = 0

3vb +OC otherwise
for link b

CI = eTχI and CII = vTχII

where va+vb = 2 , θki is the toll of player k ∈ {I, II} on link i ∈ {a, b}, e =
(

1
1

)
,

v =
(
va
vb

)

X Y

a

b

Figure 4.2: Two-node network

We set OC = 0.55 per toll booth. We take χII
(
when θIIa = θIIb = 0

)
to represent

the travel time function of the links, in other words, actor II cares for travel time
cost of the system

(
CII = vTχII +OC

)
, and of course, the operational cost if

he wants to set a toll (booth) on a link. Actors can only choose strategies from
the following set of discrete toll: θki ∈ {0, 1, 2, 3, 4, 5, 6} ∀k, i. The tolling game
involves the two actors choosing tolls (in turns) from the set of the feasible tolls
and setting them on links to optimize their individual objectives. Note that in
each turn, an actor may decide to reduce, add or remove a toll on any of the
links. For each move by an actor, the resulting flow must be in User Equilibrium
(UE).
Outcome of the tolling game

v =
(
va
vb

)
, SC = (Total)SystemCost = CI + CII
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Table 4.1: Outcome of the Two-player Road Pricing Game

User equilibrium or no toll scenario

Link Tolls v OC CI CII Path cost SC
a (0,0) 0.8 (0,0) 1.6 2.9 3.6 4.5
b (0,0) 1.2 (0,0) 3 4.3 3.6 7.3

4.6 7.2 11.8
Player I goes first leading to

Link Tolls v OC CI CII Path cost SC
a (0,0) 2 (0,0) 4 12 6 16
b (6,0) 0 (0.55,0) 0.55 0 6 0.55

4.55 12 16.55
then player II, leading to

Link Tolls v OC CI CII Path cost SC
a (0,5) 1 (0,0.55) 2 4.55 9 6.55
b (6,0) 1 (0.55,0) 3.05 3 9 6.05

5.05 7.55 12.6
then player I again, leading to

Link Tolls v OC CI CII Path cost SC
a (0,5) 0 (0,0.55) 0 0.55 7 0.55
b (0,0) 2 (0,0) 5 12 6 17

5 12.55 17.55
then player II’s best strategy now is to withdraw all its toll, leading to the first

table (the user equilibrium table), and this creates a cycle.

The first table in table 4.1 represents the user equilibrium (UE) on a toll free
network. The UE flow w.r.t χII on links a and b are respectively 0.8 and 1.2.
Note that in table 4.1 , the tolls as well as OC on the links are represented in
a vector form (x, y), where the first entry belongs to player I, and the second
entry to player II. SC is the social or system cost which represents the total cost
experienced in the system excluding the tolls (since the tolls are assumed to be
returned into the transportation network in one form or the other). An actor can
add or remove tolls depending on which strategy optimizes his objective. In the
second table, that is, the first move by actor I, he (actor I ) sets his maximum
possible link toll (i.e. 6) on link b to shift traffic to link a (see CI). Observe
the cost of 0.55 on link b under OC for player I indicating the cost of operating
the toll booth. Under the columns Ci, are the total link costs for players I
and II, the boldfaced numbers are the total network cost for the players. The
total system cost (SC ) is also in bold; for instance, in the first move of player
II (third table) where va = vb = 1, CII

a = vaχ
II
a + OC = va(2va + 2) + OC =

1(2 ∗ 1 + 2) + 0.55 = 4.55, and CII
b = vbχ

II
b = vb (3vb) = 1 (3 ∗ 1) = 3, and

CII = CII
a + CII

b = 4.55 + 3 = 7.55. Notice that operational cost OC = 0 unless
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a player has set a toll (booth) on a link (in that case, OC = 0.55). The path
cost corresponding to the third table is calculated as follows path cost (link a) =
χIIa + toll on link a = (2va + 2) + toll = 4 + 5 = 9, similarly path cost (link b) =
χIIb + toll on link b = 3vb + toll = 3 + 6 = 9.
A precise analysis reveals that this game has no Nash equilibrium (NE), and the
actors will perpetually have the incentive to change their strategies.

Remarks about this game
1. The system optimal outcome for the problem above is given by:

va = 0.95, vb = 1.05, CI = 4.47, CII = 7.01, SC = 11.48.

2. In general, the Nash equilibrium solution boundary of the game is given as
follows:

for OC : 0.5 < OC < 0.6 NE does not exist, otherwiseNE exists

This shows that the existence of NE can depend on the cost of operating
the toll booths.

3. If we ignore the OC in the model, then NE always exist among the two
actors. In this case, all actors use up to their maximum toll with θa = (0, 6),
and θb = (6, 0). Without boundary restriction on the link tolls, the two
leaders will infinitely keep on increasing the link tolls (actor I on links
b and II on link a). This is true since the demand is fixed. In fixed
demand models, it is assumed that the fixed number of trips must be realized
irrespective of the cost of travel. On the other hand, with elastic demand,
infinite tolls by the leaders will, of course, result in no travel scenario which
in turn results to zero benefit for the actors (see section 2.1.6). As such,
infinite positive toll vectors are not possible when demand is elastic.

4. By mere interchanging the link cost functions of actor I, that is,

χI =



χIa =
2.5va if θIa = 0

2.5va +OC otherwise
for link a

χIb =
2vb if θIb = 0

2vb +OC otherwise
for link b

Nash equilibrium exists for any value of OC.
5. The cost function of the type described in this example (which includes the

cost of operating the toll booths) has a good practical bases. This means
that in practice, Nash equilibrium may not exist for the road pricing game.

4.2.3 Mixed Nash equilibrium for the game in Table (4.1)

For the two-player cost minimization game described in subsection 4.2.2 above,
turn by turn, the players choose the following toll strategies during the game:
(0,0) on the links (a,b) or (0,6) on the links (a,b) for player I, and (0,0) on the
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links (a,b) or (5,0) on the links (a,b) for player II (see the “Tolls” column of
table 4.1 or the matrix under the heading “interpretation” below). Every toll
strategy translates to a feasible flow patter, which in turn translates to cost for
the players, the matrix representation of the two-player cost game is thus given
by:

q 1− q

p

1− p


4.55, 12.00 5.05, 7.55

4.60, 7.20 5.00, 12.55


Observe of course that the game has no pure NE as we have seen in subsection
4.2.2. In the mixed strategy game, player I has the strategy (p, 1-p) of playing
(Top, Bottom) and player II, the strategy (q, 1-q) of playing (Left, Right), where
p and q are probabilities. The best reply functions for both players are given
below:

βI(q) =


{(1, 0)} if 1

2 < q ≤ 1
{(p, 1− p)|0 ≤ p ≤ 1} if q = 1

2
{(0, 1)} if 0 ≤ q < 1

2

βII(p) =


{(1, 0)} if 0 ≤ p < 5.35

9.8
{(q, 1− q)|0 ≤ p ≤ 1} if p = 5.35

9.8
{(0, 1)} if 5.35

9.8 < p ≤ 1

Graphically:

I

II

Figure 4.3: Graphical representation of the mixed Nash equilibrium

The Mixed Nash equilibrium point (p, q) corresponds to (5.35
9.8 ,

1
2). So, the strategies

of player I and player II that will lead to mixed Nash equilibrium are (5.35
9.8 ,

4.45
9.8 )
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and (1
2 ,

1
2), respectively. The expected cost is CI = 4.80, CII = 9.82, SC =

14.62.
Interpretation: A (mixed) Nash equilibrium exists between the players if we
can find (mixed) strategy tolls among the actors such that the equilibrium cost
point CI = 4.80, CII = 9.82 is reached. In other words, with probability p actors
now choose random link tolls θ = p ·0+(p−1) ·6 instead of θ ∈ {0, 1, 2, 3, 4, 5, 6}.
Thus, for any probability choice p of an actor in the mixed strategy, a toll θ =
p · 0 + (p− 1) · 6 results, and further, we also have a corresponding expected cost
Ci(θ) for this actor. Note that Ci(θ) is not linear in the strategy θ.
The following tolls strategy matrix with the associated probabilities (p̂, q̂) for
players I and II (the right matrix is the cost matrix) should translate to the mixed
Nash equilibrium cost CI = 4.80, CII = 9.82, SC = 14.62 deduced above:

q̂ 1− q̂ 1
2

1
2

p̂

1− p̂

 (0, 6), (0, 0) (0, 6), (5, 0)

(0, 0), (0, 0) (0, 0), (5, 0)

 ;
5.35
9.8

4.45
9.8

 4.55, 12.00 5.05, 7.55

4.60, 7.20 5.00, 12.55



Recall that Nash [40] proved in his famous theorem that every game with a
finite number of players in which each player can choose from finitely many pure
strategies has at least one mixed (Nash) equilibrium. In contrary to what Nash
said, our game has just two players and two possible actions per player, yet we
cannot find a pair of strategy (p̂, q̂) such that the resulting cost is in equilibrium.
The explanation lies on the fact that the expected costs CI = 4.80, CII = 9.82 is
not linear in the strategy (p̂, q̂) (recall the Braess’s example in subsection 4.2.1),
and thus, the cost functions for the players under mixed strategy (p̂, q̂) may not
be continuous or quasi-convex [65].
Each pair of entries represents toll actions of players I and II respectively. The
first entry of each action is a player’s toll action on link a, and the second entry, his
action on link b. For example, the Top-Right entry of the toll matrix has the entry
(0, 6), (5, 0) and this means that player I has no toll on link a and tolled 6 on link
b, while player II tolled 5 on link a and nothing on link b (see the “Tolls” column
of third table of table 4.1). In the mixed strategy model, with probability (p̂, q̂)
the cost is defined by θ = (0, 6) , (0, 0) ; (0, 6) , (5, 0) ; (0, 0) , (0, 0) ; (0, 0) , (5, 0) (see
the matrix above). In other words, this is a linearisation of the real costs. It turns
out that there is no choice probability (p̂, q̂) for the actors in the toll matrix game
such that the resulting mixed tolls θ leads to the mixed NE of the cost matrix game
CI = 4.80, CII = 9.82. This is because, there is no (feasible) flow vector (va, vb)
such that the mixed equilibrium costs CI = 4.80 (±0.55), and CII = 9.82 (±0.55)
hold at the same time. This shows that even with a finite number of players,
and finite number of turns, we cannot find a mixed toll vector such that Nash
equilibrium exists among the actors. In fact, the strategy (p̂, q̂) has no direct
implication on the cost (utility) matrix since

1. The cost functions are generally not convex in the toll strategies of the
players (see [43])

2. The tolls in the toll matrix are not uniquely determined, and this means
that the strategy (p̂, q̂) is not uniquely given, and
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3. The non-unique tolls lead to a unique Wardrop’s equilibrium which determ-
ines the cost matrix, and

4. We also acknowledge that the traffic flow is not linear.

4.3 Numerical examples II

In this section, we use numerical examples to demonstrate the models developed
in this thesis. First, we start by demonstrating how bad the social transportation
welfare could be if only one or part of the traffic externalities that affect the
transportation network is optimized. It demonstrates the need for multi-objective
optimization of the traffic externalities when designing road pricing schemes. In
the second part of the example, we demonstrate the game theoretic approach
to the road pricing game where each actor controls a specific objective. Note
that our game model generalises a set-up where different subsets of an entire
network is controlled by various actors usually with conflicting interests. We
first show that cooperation among the (competing) actors will lead to a socially
desirable toll pattern (and hence the flow pattern), but as we stated earlier,
with autonomous actors, why would they agree to cooperate if they can achieve
a better outcome on their own or by at least forming partial coalitions among
themselves? To this, we further demonstrate the results of the non-cooperative (or
Nash equilibrium) game among the actors. In general, competition deteriorates
the social welfare of a system, but the fact is that some stakeholders may be far
better off competing with others than coalescing with them. Recall that with our
optimal Nash inducing mechanism, we can induce a desired toll pattern among
the competing actors in a way that the result of the non-cooperative game is the
socially desired outcome. We then show how users’ interests could be represented
in the upper level of the game, in particular, users are represented by one actor
who “lobbies” for an alternative but a lower toll pattern that still guarantee other
actors their Nash or cooperative outcome. The aim of this is to demonstrate that
users’ interests (for example, making sure that the link tolls stay as low as possible)
can be represented during toll decision making process. A scheme with such an
extra “condition” on tolls may seem more appealing to the road users than the
one without such a condition (see the example below). Finally, we demonstrate
our results in Ohazulike et al. [44] on the existence of the Nash equilibrium toll
for bounded tolls.

4.3.1 Five-node network example

We will use a five-node network to illustrate the models developed so far in this
thesis.

Link attributes and input
We have used the following cost functions:

System Travel Time Cost: Ct(v) = ∑
a∈A

βvata(va) = ∑
a∈A

βvaT
ff
a

(
1 + η

(
va
Ĉa

)φ)
;

the so called Bureau for Public Roads (BPR) function, where
T ffa - free flow travel time on link a,
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va - total flow on link a,
Ĉa - practical capacity of link a,and
η and φ - BPR scaling parameters.
We will use η = 0.15, φ = 4 and β (value of time - VOT) = €0.1671667/minute,
see Table 4.2 for other parameters.

Emission Cost: Ce(v) = ∑
a∈A

vaαaκala; where
κa - emission factor for link a (depending on the emission type and the vehicle
speed on link a in g/vehicle-kilometre).
la - length of link a. In this case study, we only consider two emission types; NOx

and PM10.
See Table 1a for the emission costs αa and 1c for the emission factor κa.

1

c

a

e

d

b

3

4

5

6

8

2

7

The Five-Node Network

Figure 4.4: The Five-node network

Noise Cost: Cn(v) = ∑
a∈A

γ
[
A+B log(υa

υ0
) + 10 log( va

υa
)
]
ha; where

A and B in dB(A) - vehicle specific constants as given in [29].
υa and υ0(vref ) - the average and reference speed of vehicles on link a respectively.
ha - number of households along link a.
We will use the widely used parameter values A=69.4dB(A), B=27.6dB(A) and
υ0(vref ) = 80km/hr [51], see Table 4.2 for ha and the monetary conversion para-
meter γ.

Infrastructure (Pavement) Cost: Ci(v) = ∑
a∈A

vaτa(HaJa )la; where
τa - load equivalence factor (LEF) that measures the amount of pavement deteri-
oration produced by each vehicle on link a, measured in €/vehicle-kilometre. We
will set τa = €0.0024/veh− km for all links.
Ha - initial cost for the infrastructure per kilometre.
Ja - design standard of link a measured by the design number of equivalent axle
load (ESAL) repetitions.
Ha
Ja

- unit investment cost per ESAL-kilometre. The higher the design stand-
ard of an infrastructure, the smaller the factor (Ha

Ja
), meaning that infrastructure

with a high design standard are the most cost-effective way to handle high traffic
volumes [52].
We will use Ha

Ja
= 1.
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Safety Cost: Cs(v) = ∑
a∈A

va%κala ; where
κa - risk/safety factor for link a, measured in number of injury-crashes/vehicle-
kilometre.
la ∗ va - measure of level of exposure on link a.
We will set cost of one injury % = €300/injury.

Toll Revenue: CTR(v) = ∑
a∈A

vaθa ; where
θa - is the toll on link a.
We will omit the last objective in our analysis.
Emission factors are from the CAR-model [25], safety factors, emission costs and
injury costs are chosen in a reasonable way (see below), and noise costs are from
[70]. The value of time (VOT) used is as stated in [4]. MATLAB is used to solve
the programs.

We have for the OD pair w = (a − e), that the fixed travel demand d̄ is given
by:

d̄ = 1000 (4.4)

where d̄w is the fixed OD demand for the wth OD.

Table 4.2: Link attributes and characteristics

Link Attributes (vehicle class: private cars)
Length Free Speed Link # of households Emission cost Emission cost Safety factor

Links (km) (km/hr) capacity around the links NOx(€/gram) PM10(€/gram) (injury /veh-km)

1 10 100 400 1400 10 5 0.008

2 7 70 300 2000 10 5 0.08

3 10.5 100 350 3000 45 40 0.008

4 5 70 200 200 60 60 0.00001

5 4 70 250 200 45 40 0.00001

6 10 90 250 2500 10 5 0.09

7 5 80 250 2800 10 5 0.009

8 8.5 90 300 1800 45 40 0.009

Cost of noise per household as measured from road traffic (Euro per year 2007 price scale)
dB(A) < 55 55 - 65 66 - 75 > 75

Euro per dB(A) 0 27 40 45.4

Emission factors (g/km/veh)
Speed (km/hr) NOx PM10

< 15 0.702 0.061
≤ 30 0.456 0.059
≤ 45 0.48 0.059
< 65 0.227 0.035
≥ 65 0.236 0.043
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4.3.2 Result

In this subsection, we have shown the results of the models developed so far in this
thesis when applied to a simple network. In particular, we demonstrate the effect
of single objective optimization in a system that comprises of multiple conflicting
objectives. Further, in order to solve the multiple objective problem (MOP),
we utilize the game models developed so far in this thesis to solve the MOP,
demonstrating that the objectives can be improved for each actor participating
in the road pricing game. Interestingly, users represented by a stakeholder in the
upper level could achieve a lot for the road users by participating in the road
pricing game.
Table 4.3 shows the ideal link and path flows, and costs of objectives when various
objectives are singly optimized (as in Eq.3.1) and in an aggregated multi-objective
- MO form (as in Eq.2.23 or 4.5). The table shows how other externalities as
well as the societal welfare are adversely affected when only one or part of the
externalities is optimized. It describes what happens when one stakeholder with
selfish interest controls the affairs of the transportation network. In the presence
of more than one actor who determines the tolling scheme, it means then that
none of these ideal link flows (and the corresponding ideal tolls) as given in Table
4.3 is likely to be achieved since the objectives are conflicting. In table 4.3, UE
displays the Wardropian equilibrium on a toll free network. Table 4.3b displays
the (non-unique) path flows corresponding to table 4.3a. Table 4.3c displays the
effect of single objective optimization on the system cost (see the last column)
and other objectives. Table 4.3c shows how single objective optimization can
adversely affect other objectives (observe the very high cost entries) and the
system. The system cost is of course minimal when the objectives are optimized
in an aggregated form. This can be seen from the last entry of the last column of
table 4.3c (see also Eq.2.23). The bold diagonal entries are the optimal objective
values (corresponding to the ideal link flows of table 4.3a) for the single objective
optimization problems. Note that the system/social cost (SC or MO) is defined
as in Eqs.(2.23) or explicitly in (4.5) below.

SC = MO =
∑
a∈A

(
βvata(va) + αavaκala + γ

[
A+B log(υa

υ0
) + 10 log(va

υa
)
]
ha

+τava(
Ha

Ja
)la + %vaκala

)
(4.5)

In fact, the objective values in table 4.3c are derived from the input functions for
those objectives.

Cooperative and non-cooperative leaders’ game
In this subsection, we demonstrate the road pricing game among several actors
using the five-node network. For clarity, we only consider three actors whose
interests are respectively to minimize their own costs. These actors have the
following objectives: system travel time cost (Ct(v)) , emission cost (Ce(v)) and
safety cost (Cs(v)), respectively. We denote these actors by “t”, “e” and “s”,
respectively. We assume non-negative link tolls and toll bound of [0,5]EUR per
link per player (to stimulate convergence or the existence of Nash equilibrium).
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Single leader (multi-objective) road pricing

Cooperative game
For comparison reasons, we have shown the result of a cooperative game among
the three actors (see table table 4.4a). In the cooperative game, the actors coalesce
and solve the fixed demand version of the multi-objective models of system (2.23)
using (4.5) (aggregating the three costs). Here the actors search for a common flow
vector that will minimize their collective costs. With this optimal flow pattern,
they now search for a common toll pattern that will yield the optimal flow pattern
as a user equilibrium flow. It turned out that the first-best toll vectors could be
found with the toll bound of [0,15]EUR per link (recall the bound of [0,5]EUR
per link per player).

Table 4.3: Link flows, path flows and cost for the single leader game

4.3a: Link flows when the objectives are optimised singly and as multi-objective(MO)
Objectives –> UE Travel Time Emission Noise Safety Infrastructure MO

Links

1 281 320 601 995 1,000 0 261

2 369 324 399 4 0 1,000 319

3 350 356 0 1 0 0 420

4 0 16 0 993 1,000 0 261

5 0 0 22 993 0 0 0

6 281 304 601 2 0 0 0

7 369 340 377 3 1,000 1,000 580

8 350 356 22 995 0 0 420

4.3b: Corresponding path flows
Path flows (fr)–> UE Travel Time Emission Noise Safety Infrastructure MO

Paths (r)

a–b–e 281 304 601 2 0 0 0

a–b–c–e 0 16 0 0 1,000 0 261

a–b–c–d–e 0 0 0 993 0 0 0

a–c–e 369 324 377 3 0 1,000 319

a–c–d–e 0 0 22 1 0 0 0

a–d–e 350 356 0 1 0 0 420

Total OD demand 1,000 1,000 1,000 1,000 1,000 1,000 1,000

4.3c: Single objective (and MO) optimization and the corresponding cost effect on other
objectives and on the system (€)
Cost effects–> UE Travel Time Emission Noise Safety Infrastructure System Cost

Objectives

UE 2,001 2,421 107,336 10,678 166,460 40 286,936

Travel Time 2,015 2,388 110,570 10,568 165,979 41 289,547

Emission 2,778 6,122 58,698 7,775 249,288 41 321,923

Noise 24,988 112,017 723,355 3,035 48,063 66 886,537

Safety 21,769 99,460 338,775 3,688 37,515 48 479,487

Infrastructure 10,159 44,276 87,900 3,977 181,500 29 317,682

MO 2,391 4,065 142,726 8,744 87,875 41 243,451
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One-shot non-cooperative game
Here, we describe what happens when autonomous actors or stakeholders or local
authorities optimize their individual objectives without any knowledge of what
other actors are doing. In this case, actors may be aware of the other actors, but
they do not know what their objectives look like. They act solely to optimize their
individual objectives, but then, the outcome on the network will be as a result of
their cumulative actions. For example, in the toll setting problem, without any
knowledge of other actors’ toll vectors, actors set tolls in one shot to optimize
their individual objectives (see Eq.3.1). Each actor assumes he is the only leader
and sets his ideal toll that would lead to his optimal flow as in single leader game.
Again, with the toll bound of [0,5]EUR per link per player, all actors proposed
his first-best toll except for actor “s” who proposed his “second-best” toll since
there is no feasible toll pattern within this toll bound that enables his optimal
flow pattern. In classical game theoretic models, one-shot game is a one-round
game where players play their best strategies (given the condition of the game)
without any chance of changing them afterwards. In fact, players disclose their
optimal strategies in one shot. In the road pricing game, one-shot game may
never be implemented in practice since it would be the “worst case” scenario.
We only consider it in this example for comparison reasons. The cumulative link
toll vector resulted (see table table 4.4b) in a system cost of €375,488 , which is
60% higher than cooperative outcome €234,666 of the same game. This reveals
that actions of uncoordinated actors can leave the social cost of the network (or
the market) far from optimal. The costs of the players are as a result of the
cumulative link tolls (link toll total). See the diagonal entries of table 4.3c for
an idea of what the cost of a player would be if only this actor operates without
other actors. Note that the tolls in table 4.4 are not unique in general.

Nash equilibrium game
The NE toll pricing game is described to mean a scenario where actors who take
part in the game propose tolls in turns in order to satisfy their individual interests.
In practice, it can be seen as a parliamentary debate on a tolling scheme, where
stakeholders debate on how much tolls to be set, and on which roads and during
which hour of the day and so on, all these to the benefit of the individual particip-
ating stakeholder or the constituency/industry which he represents. Here actors
iteratively solve their individual system problem as given in system (3.22). The
game terminates (at NE) when no actor can improve his objective by changing
his current toll vector given that other leaders’ strategies are fixed. This means
that stakeholders agree on a giving tolling scheme and toll pattern if they all per-
ceive it to be fair enough and have all done their best to improve their individual
interests. Giving a tolling pattern, if an actor could suggest another pattern that
improves his objective without changing other stakeholders’ toll strategies, then
the pricing game is not yet at Nash equilibrium.
We solve the Nash game using the NIRA-3 [31]. NIRA-3 is a MATLAB package
that uses the Nikaido-Isoda function and relaxation algorithm to find unique Nash
equilibria in infinite games. An interested reader is referred to Koh [30] for an evol-
utionary algorithm for EPECs. The toll bound condition of [0,5]EUR per link per
player helps ensure the existence of Nash equilibrium. Using alphamethod=0.5,
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precision=[1e-3, 1e-3], and TolCon=TolFun=TolX=1e-3 (for more on the NIRA-
3 see [31]). It took NIRA-3 approximately 2 minutes in 70 iterations to find the
NE (see Table 3c). The Nash equilibrium game was conducted on MATLAB
version 9 running on a 64-bit Windows 7 machine with 4 GB of RAM.

Table 4.4: Results for Different Kinds of Game Models Studied: “First-Best
Pricing”

4.4a: Cooperative game among the actors
Leaders Path flows

Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 14.14 261 a–b–e [i] 0

2 15.00 319 a–b–c–e [ii] 261

3 15.00 420 a–b–c–d–e [iii] 0

4 0.00 261 a–c–e [iv] 319

5 0.00 0 a–c–d–e [v] 0

6 15.00 0 a–d–e [vi] 420

7 11.74 580 Total demand 1000

8 13.40 420

Cost € 4,065 € 142,726 € 87,875 Toll revenue (θT v) € 27,217 System cost = € 234,666

4.4b: Link tolls for one-shot game and its network effect
Leaders Path flows

Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 4.43 3.04 1.34 8.81 497 a–b–e [i] 497

2 5.00 4.00 0.40 9.40 0 a–b–c–e [ii] 0

3 5.00 5.00 0.00 10.00 503 a–b–c–d–e [iii] 0

4 0.00 3.46 1.50 4.96 0 a–c–e [iv] 0

5 0.00 0.00 0.85 0.85 0 a–c–d–e [v] 0

6 5.00 0.10 3.93 9.03 497 a–d–e [vi] 503

7 4.82 5.00 4.80 14.61 0 Total demand 1000

8 4.52 4.59 0.00 9.11 503

Cost € 4,437 € 200,771 € 170,281 Toll revenue (θT v) € 18,478 System cost = € 375,488

4.4c: Link tolls for a complete Nash game and its network effect
Leaders Path flows

Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 3.15 1.44 1.43 6.01 281 a–b–e [i] 0

2 2.41 3.75 3.14 9.30 417 a–b–c–e [ii] 281

3 2.06 3.24 3.74 9.04 302 a–b–c–d–e [iii] 0

4 0.45 1.32 0.91 2.68 281 a–c–e [iv] 417

5 0.99 1.04 1.04 3.06 0 a–c–d–e [v] 0

6 4.91 4.88 4.67 14.45 0 a–d–e [vi] 302

7 0.64 2.55 2.24 5.43 698 Total demand 1000

8 3.63 3.76 3.95 11.34 302

Cost € 6,353 € 163,925 € 100,768 Toll revenue (θT v) € 16,265 System cost = € 271,047
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4.4d: Game with users’ interest (in form of minimizing link tolls) represented in the upper level
(w.r.t. Nash game - 4.4c)

Leaders Path flows
Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 0.00 281 a–b–e [i] 0

2 0.61 417 a–b–c–e [ii] 281

3 1.60 302 a–b–c–d–e [iii] 0

4 0.00 281 a–c–e [iv] 417

5 0.00 0 a–c–d–e [v] 0

6 6.35 0 a–d–e [vi] 302

7 0.00 698 Total demand 1000

8 4.66 302

Cost € 6,353 € 163,925 € 100,768 Toll revenue (θT v) € 2,148 System cost = € 271,047

4.4e: Game with users’ interest (in form of minimizing link tolls) represented in the upper level
(w.r.t. Cooperative game - 4.4a)

Leaders Path flows
Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 0.00 261 a–b–e [i] 0

2 0.86 319 a–b–c–e [ii] 261

3 0.66 420 a–b–c–d–e [iii] 0

4 0.00 261 a–c–e [iv] 319

5 1.48 0 a–c–d–e [v] 0

6 3.26 0 a–d–e [vi] 420

7 0.00 580 Total demand 1000

8 1.86 420

Cost € 4,065 € 142,726 € 87,875 Toll revenue (θT v) € 1,336 System cost = € 234,666

The Nash game (Table 3c) shows improvement of €104,442 (27%) on the system
cost with regard to the one-shot game. The iterative process of the Nash game
tends to inform the actors about other actors’ objectives, leading to a sort of
“coordinated” game. In some limited sense, actors, during the iterative process,
indirectly solve a multi-objective problem [3, 38]. See also that the cooperative
game improves the social cost of the Nash game by €36,381 (13%) showing that
actions of non-cooperative players may have a negative effect on the system as a
whole.

Users interest
Even with its rich potentials to alleviating most of our traffic worries, road pricing
has suffered setbacks due to poor acceptance not only from the stakeholders, but
also from road users. Road users, even before the implementation of road pricing,
perceive that the pricing will take money out of their pockets to the extent that
it affects their income. With this in mind, they kick against the implementation
of road pricing. To check for this, as earlier mentioned, our models allow users’
interest be represented by a stakeholder on the upper level of decision. The
objective of this “user-stakeholder” is to minimize the total network toll, or to
keep link tolls as low (fair) as possible. This stakeholder will play the stakeholders’
Nash game described in section 3.1 (and subsection 3.2.2). Alternatively, as
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mentioned in section 3.1, the “user-stakeholder” may allow other stakeholders
play the road pricing game, and after the game has reached equilibrium, he then
seeks for an alternative (lower) toll vector θ that achieves the same Nash flow
pattern for the stakeholders (using the linear system (3.20) of corollary 2 - see
also Eq.(4.6) below), thus assuring each actor his Nash outcome (see table 4.4d).
Table 4.4d shows that each actor can still be assured of his Nash outcome, but
with a lower link and total network toll. The total network toll is reduced by
€14,116 (87%) with respect to the Nash game result (table 4.4c). Furthermore, in
the cooperative game, user-stakeholder can achieve a total network toll reduction
of €25,880 (95%) for the road users, and still guarantee other stakeholders their
respective entitlement in the grand coalition game (see table 4.4e). For elastic
demand, users can gain much in toll reduction by slightly deteriorating the actors’
utilities, because for elastic demand, the total toll revenue is the same for all toll
patterns (see Eq.(2.18))[79]. This slight deterioration is easily covered by the gain
in toll reduction so that the actors are not left worse off than in the Nash game
(or in the grand coalition).

∑
a∈A

(βta(v̄a) + θa) δar ≥ λw ∀r ∈ Rw, ∀w ∈ W∑
a∈A

(βta(v̄a) + θa) v̄a =
∑
w∈W

λwd̄w
(4.6)

where v̄ is the Nash equilibrium link flow vector and λ is the free scalar vec-
tor representing the minimum travel costs for the ODs (recall the assertion in
Eq.(4.1)). θ is the variable vector of link tolls.

Second-best pricing scheme

So far, we have assumed the possibility of tolling all links, but in practice, such an
assumption may not be feasible. For this, economists proposed a tolling scheme
that only tolls a part of the network or a subset of the entire network. This
scheme may be practically feasible but may lead to a suboptimal network flow
pattern, hence the name, second-best road pricing scheme.
To demonstrate the game under the second-best pricing scheme, we assume that
links 3 and 6 are not toll-able. In this case, the game in program (3.22) now
includes the extra constraint θk3 = θk6 = 0, ∀k. Without changing the models
and parameters, except for the extra toll constraint, we have the results of the
second-best road pricing game displayed in 4.5:
As expected, with the extra condition (on toll), the feasible region decreases
(compared with table 4.4). The actors’ ideal tolls for the one-shot non-cooperative
game lead to a possible “worst case” system cost of €431,227. The grand coalition
game (table 4.5a) improves the Nash game (table 4.5c) by €6,897 (3%).
Again, “user-stakeholder” can achieve a total network toll reduction of €9,204
(84%) with respect to Nash game (see table 4.5d), and €11,030 (89%) with
respect to the grand coalition game (see table 4.5e).
Though Nash game improves the system cost of one-shot game, cooperative game
is again the overall best in terms of system cost.
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Compromise between Nash equilibrium and Multi-objective optimization

Note that it is a mere coincidence for this concrete example game that every
player is better off in the grand coalition (table 4.4a and table 4.5a) than in the
complete Nash game (table 4.4c and table 4.5c). In general, the system cost is
always minimal in the grand coalition game, but there is no guarantee that each
player will be better off in the grand coalition in terms of individual cost.

Table 4.5: Results for Different Kinds of Game Models Studied: Second-Best
Pricing

4.5a: Cooperative game among the actors
Leaders Path flows

Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 15.00 0 a–b–e [i] 0

2 5.51 569 a–b–c–e [ii] 0

3 0.00 431 a–b–c–d–e [iii] 0

4 0.00 0 a–c–e [iv] 569

5 0.00 0 a–c–d–e [v] 0

6 0.00 0 a–d–e [vi] 431

7 5.51 569 Total demand 1000

8 14.14 431

Cost € 4,744 € 131,613 € 123,974 Toll revenue(θT v) € 12,374 System cost = € 260,331

4.5b: Link tolls for one-shot game and its network effect
Leaders Path flows

Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 4.91 3.65 5.00 13.55 302 a–b–e [i] 302

2 5.00 4.04 2.44 11.48 80 a–b–c–e [ii] 0

3 0.00 0.00 0.00 0.00 617 a–b–c–d–e [iii] 0

4 0.00 0.00 0.00 0.00 0 a–c–e [iv] 80

5 0.00 0.00 0.00 0.00 0 a–c–d–e [v] 0

6 0.00 0.00 0.00 0.00 302 a–d–e [vi] 617

7 0.30 0.23 2.44 2.96 80 Total demand 1000

8 5.00 5.00 0.00 10.00 617

Cost € 4,644 € 293,390 € 133,193 Toll revenue(θT v) € 11,431 System cost = € 431,227

4.5c: Link tolls for a complete Nash game and its network effect
Leaders Path flows

Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 4.88 5.00 4.33 14.21 0 a–b–e [i] 0

2 0.00 3.94 0.00 3.94 599 a–b–c–e [ii] 0

3 0.00 0.00 0.00 0.00 401 a–b–c–d–e [iii] 0

4 0.05 0.05 0.05 0.15 0 a–c–e [iv] 599

5 0.02 0.02 0.02 0.07 0 a–c–d–e [v] 0

6 0.00 0.00 0.00 0.00 0 a–d–e [vi] 401

7 0.00 5.00 0.27 5.27 599 Total demand 1000

8 5.00 4.09 4.51 13.61 401

Cost € 5,363 € 133,813 € 128,052 Toll revenue(θT v) € 10,968 System cost = € 267,227
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4.5d: Game with users’ interest (in form of minimizing link tolls) represented in the upper level
(w.r.t. Nash game - 4.5c)

Leaders Path flows
Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 5.01 0 a–b–e [i] 0

2 0.00 599 a–b–c–e [ii] 0

3 0.00 401 a–b–c–d–e [iii] 0

4 0.00 0 a–c–e [iv] 599

5 0.00 0 a–c–d–e [v] 0

6 0.00 0 a–d–e [vi] 401

7 0.00 599 Total demand 1000

8 4.40 401

Cost € 5,363 € 133,813 € 128,052 Toll revenue(θT v) € 1,764 System cost = € 267,227

4.5e: Game with users’ interest (in form of minimizing link tolls) represented in the upper level
(w.r.t. Cooperative game - 4.5a)

Leaders Path flows
Link “t” “e” “s” Link toll Link flow Paths [j] [fj ]
1 3.54 0 a–b–e [i] 0

2 0.00 569 a–b–c–e [ii] 0

3 1.56 431 a–b–c–d–e [iii] 0

4 0.00 0 a–c–e [iv] 569

5 0.00 0 a–c–d–e [v] 0

6 0.43 0 a–d–e [vi] 431

7 0.00 569 Total demand 1000

8 1.56 431

Cost € 4,744 € 131,613 € 123,974 Toll revenue(θT v) € 1,344 System cost = € 260,331

Non-existence of Nash equilibrium

In this part, with a concrete example we demonstrate the non-existence of Nash
equilibrium NE with unbounded tolls described in Corollary 4 subsection 4.1.3
and in Ohazulike et al. [44]. With this example, we show that if stakeholders are
free to choose tolls without bounds, and if demand for each origin-destination is
fixed, (that is no matter how high the tolls are, the users will still travel), then
the road pricing game described in this Chapter has no Nash equilibrium. This
means that at each turn of play by an actor, there is always a feasible toll vector
that improves this actor’s objective without changing other actors’ toll strategies.
In fact, each actor can always find a toll pattern that achieves his optimal flow
pattern.
We again take that actors have the following objectives: system travel time cost
(Ct(v)), emission cost (Ce(v)) and safety cost (Cs(v)), respectively. We denote
these actors by “t”, “e” and “s” respectively. Suppose actors toll/proposes a toll
for the network (Figure 3) in a sequential manner (”t” ==> “e” ==> “s” ==>
“t” ==> “e” ==> “s”... and so on), we show that they will always find a toll
leading to their ideal or optimal flow (and hence their optimal objective value)
in each move (see proof of corollary 2). Let us represent the stakeholders’ action
by θki which is the link toll vector proposed by actor k in the ith move, and let
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θk+
i be the corresponding positive toll vector that can achieve the same network
flows as θki . We also denote by θ̄k the ideal or the first-best toll computed from
Eq.(3.19) or precisely Eq.(4.3) for actor k ∈ K. As in Eq.(4.3) θ̄k is given by

θ̄k = α∇Ck(v̄k)− βt(v̄k)−
∑

`∈K\k
θ`

where v̄k is the ideal flow vector for player k. The quantity ∇Ck(v̄k) is the vector
of link cost derivatives for actor k evaluated at actor k′s optimal flow vector v̄k.
The term t(v̄k) is the link travel time vector again evaluated at actor k’s optimal
flow vector v̄k. The following gives the numerical values of ∇Ck(v̄k) and t(v̄k) for
the three actors:

∇Ct(v̄t) = (1.31, 2.03, 1.90, 0.72, 0.57, 2.95, 2.23, 2.36)T

∇Ce(v̄e) = (74.65, 17.12, 129.57, 83.70, 49.36, 96.72, 154.25, 104.89)T

∇Cs(v̄s) = (24.00, 168.00, 25.20, 0.02, 0.01, 270.00, 13.50, 22.95)T

βt(v̄t) = (1.06, 1.21, 1.22, 0.72, 0.57, 1.48, 0.95, 1.23)T

βt(v̄e) = (1.77, 1.48, 1.05, 0.72, 0.57, 6.69, 1.11, 0.95)T

βt(v̄s) = (6.88, 1.00, 1.05, 67.88, 0.57, 1.11, 24.70, 0.95)T

Let player “t” be the first to toll or propose a toll for the network, he thus
proposes his first-best toll vector

θt1 = θ̄t = 1×∇Ct(v̄t)− βt(v̄t) = (0.25, 0.82, 0.68, 0.00, 0.00, 1.47, 1.28, 1.13)T

then for player “e” to achieve his ideal flow, he will now propose

θe1 = θ̄e − θt1 = (1×∇Ce(v̄e)− βt(v̄e))− θt1
= (72.63, 14.82, 127.84, 82.98, 48.79, 88.56, 151.85, 102.81)T

Observe that θ̄e = θe1 + θt1 meaning that with θe1 player “e” will change the traffic
flow to his ideal flow during his turn of play given the tolls of other players (in
this case player “t”).
The next move will be player “s”, and with (θe1 + θt1) in place, to achieve his ideal
flow vector, his optimal response is as follows:

θs1 = θ̄s −
(
θe1 + θt1

)
= (1×∇Cs(v̄s)− βt(v̄s))−

(
θe1 + θt1

)
= (−55.76, 151.36, −104.37, −150.85, −49.35, 178.86, −164.33, −81.94)T

θs+1 = (10, 100×∇Cs(v̄s)− βt(v̄s))−
(
θe1 + θt1

)
= (242 320.24, 1 696 783.36, 254 390.43, 0.63, 71.84, 2 726 908.86,

136 172.17, 231 690.11)T
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Continuing with the game, next will be player “t” again, his ideal flow now is
achieved by the following positive toll vector, and so on.

Links θt+2 θe+2 · · ·

(925, 550×∇Ct(v̄t)− βt(v̄t) (109, 650×∇Ce(v̄e)− βt(v̄e) · · ·
−
(
θe1 + θs+1

))
−
(
θt+2 + θs+1

))
1 970, 618.33 6, 972, 310.81 · · ·
2 179, 281.38 593.54
3 1, 503, 549.47 12, 449, 409.54
4 663, 025.03 8, 514, 678.62
5 530, 351.28 4, 881, 900.31 . . .
6 26.74 7, 877, 978.82
7 1, 927, 650.26 14, 849, 688.96
8 1, 950, 278.09 9, 319, 219.35 · · ·

Of course these high tolls cannot be realized in practice. The aim of this example
is to show that without bounds on tolls, the players can always find a positive toll
that yields their ideal flow pattern when it is their turn to propose a toll. Note
that these tolls are in general not unique, and therefore, with (θe1 + θt1) in place,
player “s” may find ideal positive toll vectors with tolls lower than what we see
in θs+1 above, the same holds for θt+2 and θe+2 (see corollary 1). For example, with
(θe1 + θt1) in place, θs+1 = (22.68, 319.65, 157.68, 82.98, 48.79, 331.65, 11.11, 133.10)T
will also lead to the ideal flow vector v̄s for player “s”. In fact, the link tolls in
θt1 and θe1 could be made lower than they appear in this example using Eq.(3.20)
of Corollary 2, and this will lead to even lower tolls in θs+1 and so on.
Thus, this example is simply to illustrate our statement in Corollary 3 and 4
that Nash equilibrium does not exist with unbounded tolls. For bounded tolls,
the non-existence is demonstrated with the two-node example in section 4.2.

4.4 Nash equilibrium and cooperative game

In the preceding sections (sections 4.1 and 4.2), we have shown that even under
the restrictions on tolls (such as θ ≤ α, where α ∈ R) that the existence of
Nash equilibrium is not guaranteed. In this section, therefore, we study the
necessary conditions for “optimal” solutions of both the Nash equilibrium and
the cooperative games. In particular, we analyse the stationary points of the two
games and draw remarkable comparisons of the two.

4.4.1 Stationary points of cooperative and non-cooperative game

Nash Equilibrium/Non-cooperative Game Problem

Let tolls be bounded (i.e. that link tolls can not be infinitely large) and suppose
that a Nash equilibrium exists, then it will be interesting to know how far the
Nash flow vector deviates from the “optimal flow” vector resulting from a grand
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coalition game or MO solution of system (4.5) or (4.8). In other words, we are
interested in knowing how far the competition among the actors can worsen the
optimal system cost. Let us consider the fixed demand case.
From Eqs.(3.22) and (4.1) we know that each stakeholder k ∈ K solves the
following problem:

min
v,θk

Zk = Ck(v)

s.t

ΛT
(
βt(v) + θk + ∑

j εK\k
θ̃j
)
≥ ΓTλ

[
ϑk
]

(
βt(v) + θk + ∑

j εK\k
θ̃j
)T

v = d̃Tλ
[
ηk
] and

v = Λf [ψ]
Γf = d̃ [ς]
f ≥ 0 [ρ]

(θk ≥ 0)
[
σk
]

(4.7)

Recall from section 4.1.1 that the link flows (and thus the minimum path cost λ)
are not actor dependent.

Remark
Note that due to the non-uniqueness of path flows, it is possible to have different
path flows for different actor, but then, without loss of generality, we take one
path flow pattern f for all actors and omit the superscript k on f .
The Greek letters

(
ϑk, ηk, ψ, ς, ρ, σk

)
are KKT multipliers associated with the

constraints. The tilde “~” indicates fixed parameters in the above optimization
problem. System (4.7) involving all players is called an equilibrium problem subject
to user equilibrium condition, see also [24] for an analysis of such a game.
Now, suppose for every leader k, Lk is the Lagrangian and that the vector

(
v̌, θ̌k

)
solves (4.7) at (Nash) equilibrium, then with Assumption 1, there exist multipli-
ers

(
ϑ̌k, η̌k, ψ̌, ς̌ , ρ̌, σ̌k

)
such that the following KKT conditions hold ∀k ∈ K:

KKT 4.7

Lk = Ck(v) +

ΓTλ− ΛT

βt(v) + θk +
∑
j εK\k

θ̃j

T ϑ̌k +

βt(v) + θk +
∑
j∈K\k

θ̃j

T

v −
(
d̃
)T (λ)

 η̌k
+ (Λf − v)T ψ̌ +

(
d̃− Γf

)T
ς̌ − fT ρ̌−

(
θk
)T

σ̌k

∇vLk = ∇Ck(v̌)− β
(
ΛT∇t(v̌)

)T
ϑ̌k +

βt(v̌) + θ̌k +
∑
j∈K\k

θ̃j + βv̌T∇t(v̌)

 η̌k − ψ̌ = 0

∇fLk = ΛT ψ̌ − ΓT ς̌ − ρ̌ = 0

∇θkLk = −Λϑ̌k + v̌η̌k − σ̌k = 0
fT ρ = 0(

θ̌k
)T

σ̌k = 0

ϑ̌k, ρ̌, σ̌k ≥ 0 ∀k ∈ K;

ΓTλ− ΛT

βt(v̌) + θ̌k +
∑
j∈K\k

θ̃j

T ϑ̌k = 0
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Grand Coalition or Cooperative Game Problem

The grand coalition (GC ) game with a toll vector θ = ∑
k∈K

θk (assuming that GC

assigns θk to each actor k ∈ K) is formulated as follows:
MO : min

v,θk
Z = ∑

k∈K
Ck(v)

s.t

ΛT
(
βt(v) + ∑

k∈K
θk
)
≥ ΓTλ [ϑ](

βt(v) + ∑
k∈K

θk
)T

v =
(
d̃
)T

λ [η]
and

v = Λf [ψ]
Γf = d̃ [ς]
f ≥ 0 [ρ]

(θk ≥ 0) [σk] ∀k ∈ K

(4.8)

Remark
• The grand coalition game in system (4.8) minimizes the entire system cost,

and thus, resulting in “Pareto” optimal system flow v̄.
• In (4.8), instead of ∑k∈K θ

k we could just write θ, the toll θ is written the
form of ∑k∈K θ

k to facilitate the proof of Corollary 5 below.
• Since systems (4.7) and (4.8) have a non-linear constraint respectively, the

efficient way to solve the systems so that we reach the “Pareto” optimum
is to:
1. Solve the convex system for a system optimal flow v̄ by omitting the

first set of constraints (EqC_FD) and the last (the toll) constraint in
systems (4.7) and (4.8).

2. Then, fixing the optimal flow v̄, we search for a feasible toll vector θ̄
that satisfies the omitted constraints in step 1. Observe that without
EqC-FD systems (4.7) and (4.8) are linear. This is the same as solving
the linear system (4.6) together with non-negativity of the tolls.

• The solution steps above apply to both first and second-best pricing schemes.
Now, suppose L is the Lagrangian and that v̄ and θ̄k ∀k ∈ K solves the grand co-
alition game (4.8), then withAssumption 1, there exist multipliers

(
ϑ̄, η̄, ψ̄, ς̄ , ρ̄, σ̄k

)
such that the following KKT conditions hold:
KKT 4.8

L =
∑
k∈K

Ck(v) +
[

ΓTλ− ΛT
(
βt(v) +

∑
k∈K

θk

)]T
ϑ̄+

(βt(v) +
∑
k∈K

θk

)T
v −

(
d̃
)T (λ)

 η̄
+ (Λf − v)T ψ̄ +

(
d̃− Γf

)T
ς̄ − fT ρ̄−

(
θk
)T
σ̄k

∇vL =
∑
k∈K

∇Ck(v̄)− β
(
ΛT∇t(v̄)

)T
ϑ̄+

(
βt(v̄) +

∑
k∈K

θ̄k + βv̄T∇t(v̄)
)
η̄ − ψ̄ = 0

∇fL = ΛT ψ̄ − ΓT ς̄ − ρ̄ = 0
∇θkL = −Λϑ̄+ v̄η̄ − σ̄k = 0
fT ρ̄ = 0,

(
θ̄k
)
σ̄k = 0 ∀k ∈ K

ϑ̄, ρ̄, σ̄k ≥ 0 ∀k ∈ K; ,
[

ΓTλ− ΛT
(
βt(v̄) +

∑
k∈K

θ̄k

)]
ϑ̄ = 0
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If tolls are bounded and suppose that Nash equilibrium exists, then, (theoretic-
ally) the (stationary point) solution to the Nash game converges to a stationary
point of the cooperative game. We therefore state the following corollary:
Corollary 5. Assuming that Nash equilibrium exists, then there exist multipli-
ers

(
ϑ̌k, η̌k, ψ̌, ς̌ , ρ̌, σ̌k

)
such that KKT 4.7 holds for all k at (Nash) equilibrium.

Moreover, the corresponding (stationary) vector
(
v̌, θ̌

)
that solves the Nash game

(3.23) or (4.7) is also a stationary (possibly a local or global solution) for the
grand coalition (GC) game (4.8), where θ̌ ∈ R|K|.

Proof
Since

(
ϑ̌k, η̌k, ψ̌, ς̌ , ρ̌, σ̌k

)
exists, then, there exists (ϑ̄, η̄, ψ̄, ς̄ , ρ̄, σ̄k) =

∑
kεK

(
ϑ̌k, η̌k, ψ̌, ς̌ , ρ̌, σ̌k

)
such that the corresponding vector

(
v̌, θ̌

)
of system (4.7) solves KKT 4.8. For in-

stance, see from KKT 4.8 that

∇vL =
∑
k∈K

∇Ck(v̄)− β
(
ΛT∇t(v̄)

)T
ϑ̄+

(
βt(v̄) +

∑
k∈K

θ̄k + βv̄T∇t(v̄)
)
η̄ − ψ̄

=
∑
k∈K

∇Ck(v̄)− β
(
ΛT∇t(v̄)

)T ∑
kεK

ϑ̌k +
(
βt(v̄) +

∑
k∈K

θ̄k + βv̄T∇t(v̄)
)∑
k∈K

η̌k −
∑
k∈K

ψ̌

=
∑
k∈K

(
∇Ck(v̌)− β

(
ΛT∇t(v̌)

)T
ϑ̌k +

(
βt(v̌) +

∑
k∈K

θ̌k + βv̌T∇t(v̌)
)
η̌k − ψ̌

)
= 0 (due toKKT 4.7) �

Remark
• Observe that the KKT conditions of KKT 4.7 and KKT 4.8 are the same.
• Intuitively, if Nash equilibrium was not a local minimum, then at least one

stakeholder could improve his objective contradicting the fact that Nash
equilibrium is a stable state where no stakeholder could improve his object-
ive.

• Corollary 5 is comparable to Proposition 5.5 in [33]. Our case is more
general since we do not assume a completely separable system in the sense
that each actor’s model is a function of other actors’ toll vectors.

• Note that corollary 5 can be extended to a Nash game between any form
of coalitions that the stakeholders deem profitable.

4.4.2 Stability of solutions

To combine their forces, actors or stakeholders or regions may form coalitions
during the road pricing game. In this subsection, we will investigate which co-
alitions are possible, and which are stable. We restrict the results here to a fixed
demand traffic model, the results can easily be extended to elastic demand traffic
model.
Let K denote the set of all actors in the road pricing game. Consider a parti-
tion ßm = {Si, · · · , Sr} of K. Treating each block Si of ßm as a single player
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with objective ∑
k∈Si

Ck(v̄(ßm)) or utility − ∑
k∈Si

Ck(v̄(ßm)), we may define the utility

u(Si, ßm) of a coalition Si with respect to ßm as follows

u(Si, ßm) = −
∑
k∈Si

Ck(v̄(ßm)) (4.9)

where v̄(ßm) is the traffic pattern resulting from a Nash equilibrium (assuming
this exists and is unique) in the game with r players, representing coalitions
Si, · · · , Sr. Ck(v(ßm)) is the objective function value. Therefore, a coalition Si
may have a different utility u(Si, ßm) depending on the partition ßm (containing
Si as a block) of interest. We assume that the objective of coalition Si is to
optimize the collective interest of the actors in the coalition Si. Given a partition
ßm, the coalitions Si ∈ ßm compete with each other, and the game is a Nash
equilibrium game between the coalitions Si ∈ ßm with each coalition Si solving
the following cost minimization problem (see also system (4.7)):

min
v,θ

∑
k∈Si

Ck(v(ßm))

s.t

f low feasibility conditions

EqC−FD

Where EqC_FD denotes the equilibrium conditions for elastic demand (see Eq.(4.7)).
Observe that we have

(
2K − 1

)
number of unique set identities i since an empty

set φ is not a coalition. A coalition Si may appear in one or more partitions. We
denote the one set partition or the grand coalition partition by ßK = {K} where
K is the set of all players.

Definition 1. (“Pessimistic” utility of a coalition): For an arbitrary non-empty
subset Si ⊆ K, let us define

u(Si) = min
ßm, Si∈ßm

u(Si, ßm)

the “pessimistic” utility of Si, defined by the worst coalition structure on K\Si.

Definition 2. (Stability of a partition): We say that a partition ßm = {Si, · · · , Sr}

of K is stable if there exist allocation rules x : u(Si, ßm)→ R
∣∣∣Si∣∣∣ among all sets

Si ∈ ßm such that the utility xk of every individual player k (in ßm) is at least
his worst case stand-alone utility u({k}). In other words,

ßm = {Si, · · · , Sr} is stable ⇐⇒∃ x ∈ R|K| :
x(Si) = u(Si, ßm)
xk ≥ u({k}) ∀k

where ∑
k∈Si

xk = x(Si) = u(Si, ßm) ∀Si.

Pessimistic k will not leave their coalitions provided that u(Si, ßm) is appropri-
ately allocated among the members of Si.
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Definition 3. (Core): We say that a core exists for the road pricing game if for
the grand coalition ßK = {K}, there exists an allocation rule x : u(K, ßK) →
R|K| in ßK with utility vector xk ∈ R|K|such that this allocation rule guarantees
every coalition Si at least its pessimistic utility u(Si). We thus define a core as
follows

core :
{
x ∈ R|K|

∣∣∣∣ x(K) = u(K)
x(Si) ≥ u(Si) ∀S ⊂ K

}

Corollary 6. By definition, if core 6= φ, then the grand coalition ßK = {K} is
stable (x ∈ core yields the allocation in definition 2).

Corollary 7. A necessary and sufficient condition for a partition ßm of K to be
stable is that the utility u(Si, ßm) is such that the following holds

u(Si, ßm) ≥
∑
k∈Si

u({k}) ∀Si ∈ ßm

Proof
Proof follows from definition 2. �

Corollary 7. The resulting Nash equilibrium flow vector v̄(ßm) for any partition
set ßm is a stationary (possibly local or global) point v̌ of the grand coalition
program (4.8).

Proof
The proof follows from Corollary 5. �

4.5 Summary and conclusion

In this chapter, we studied the classical game theoretical solution concepts ranging
from Nash solutions and cooperative solutions to the core of the road pricing
game. We showed that in general, the road pricing game has no Nash equilibrium
(both in pure and mixed strategies) even when tolls are bounded. With bound
restrictions on tolls, the game may possess Nash equilibrium. Investigating the
stationary points of the solutions, we revealed that a stationary Nash equilibrium
point coincides with that of the grand coalition game. We further proved that
if side payments are allowed within coalitions in the cooperative game, then a
partition is stable if the core is non-empty, and the total utility of any stable
partition is the same as that of the grand coalition game. The chapter also
contains numerical examples demonstrating the bi-level multi-stakeholder-multi-
objective road pricing game described in chapter 3.
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Chapter 5

Optimal Nash inducing Mechanism

5.1 Multi-level model

We have shown so far (in Chapter 4 ) that for the multi-leader model in Chapter
3, the existence of a NE cannot be guaranteed. In practice, such a phenomenon
is not desirable since it makes the whole pricing game unstable. Further, even if
Nash equilibrium exists between the actors, the resulting flow may be far from
(Pareto) optimal flow. Therefore, the question we would like to answer is: Can
we design a tolling game that yields a stable outcome for the actors? In this
chapter, we design a mechanism which induces a NE and even more returns the
system optimal strategy as the optimal strategy for each actor. For this model, we
will assume that there is a “grand leader (GL)” who has authority over all other
leaders (extending the foregoing models by adding one more uppermost level in
figure 3.1). See him as the central (or federal) government. His sole objective is
to ensure (Pareto) optimal social welfare of the entire system. Since competition
may lead to tolls that deteriorate the social welfare, and since it is not clear if there
is a profit sharing rule which leaves the grand coalition as the only stable coalition
among the actors (the core of the game), we develop a mechanism that achieves
efficient and desirable global outcomes irrespective of what the actors do. This
mechanism aligns the objective of each actor with that of the GL. Thus, actors
with once conflicting interests, now indirectly pursue common (GL’s) interest. To
achieve this goal, the mechanism uses a taxing scheme to simultaneously induce a
pure NE and cooperative behaviour among actors, and hence, yielding tolls that
are optimal for the system (see figure 5.1). It will turn out later that the tax is
the marginal cost which an actor imposes on the system by not considering other
actors’ objectives during his choice of optimal flow pattern.

We assume that the total revenue generated from the taxing scheme just as the
tolls (by the stakeholders) are invested back into the system. We also assume
that the actors’ utility functions are known to the GL. The tax can be seen as
what an actor pays for the utility he enjoys for taking part in road pricing, which
(the tax) depends on the flow pattern proposed or chosen by this actor. Recall
that for any solution v̄ of the models below, we can always choose a first-best
pricing toll which ensures that v̄ is UE.

75
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Figure 5.1: Multi-level-Multi-leader road pricing game

5.2 Mathematical formulation of the mechanism

5.2.1 Grand leader’s problem

Again, for simplicity, we restrict ourselves to fixed origin-destination demands
(extension to Elastic demand model is straightforward). Recall that for any
solution link flow vector v̄, we can always choose a first-best pricing toll which
ensures that v̄ is UE using Eq.(4.6) for example. We therefore state the objective
of the grand leader to search for an optimal flow pattern v̄.
The GL problem is a multi-objective (grand coalition) optimization problem that
searches for a flow pattern minimizing the entire system cost. Using the weighted
sum method (see Eq.(2.22)), we aggregate the objectives into one, converting it
to a single objective optimization. Note that we have used equal weights on the
objectives. Furthermore, note that the grand leader “reserves the right” to choose
weights on the objectives as he deems socially equitable/profitable for the system.
The formulation is as follows (see also Eq.2.23):

min
v
Z(v) =

∑
k∈K

Ck(v) s.t
v = Λf [ψ]

Γf = d̄ [λ]
f ≥ 0 [ρ]

(5.1)

The constraints are the flow feasibility constraints, and ψ ∈ R|A|, λ ∈ R|W|, ρ ∈
R|R| are the KKT multipliers associated with the constraints.



5.2 Mathematical formulation of the mechanism 77

Let L be the Lagrangian and v̄ the solution to (5.1), then with Assumption 1,
there exists (ψ̄, λ̄, ρ̄) such that the following KKT optimality conditions hold:

L =
∑
k∈K

Ck(v) + (Λf − v)Tψ + (d̄− Γf)Tλ− fTρ

∇vL =
∑
k∈K
∇Ck(v̄)− ψ̄ = 0 or

d

dva

∑
k∈K

Ck
a (v̄a)− ψ̄a = 0 ∀a ∈ A (5.2)

∇fL = ΛT ψ̄ − ΓT λ̄− ρ̄ = 0 or
∑
a∈A

ψ̄aδar − λ̄w − ρ̄r = 0 ∀r ∈ Rw,∀w ∈ W(5.3)

fT ρ̄ = 0 or ρ̄rfr = 0 ∀r ∈ R (5.4)
ρ̄ ≥ 0, f ≥ 0

Eq.(5.4) is called complementarity equation. Again δar is a binary variable that
equals 1 if link a belongs to path r, and 0 otherwise.

5.2.2 Stakeholders’ (or Actor’s) problem

Having shown that NE does not exist in general, we discuss a mechanism where
the GL chooses appropriate taxes xk, k ∈ K which force the game into a NE.
This taxing mechanism is as follows:
The GL penalizes (taxes) the kth actor by vTxk , where vT is the transpose vector
of link flows, and xk ∈ R|A| is a leader specific constant tax vector. The tax(
vk
)T
xk should be seen as the marginal cost which actor k ∈ K imposes on the

system by not considering other actors’ objectives during his choice of flow vector
v. Henceforth we will omit the superscript k on the flow vector vk of actor k due
to Eq.(4.1).
Now for fixed tax xk each of the stakeholders k ∈ K solves the following optim-
ization problem:

min
v
Zk(v) = Ck(v) + vTxk s.t

v = Λf ψ

Γf = d̄ λ
f ≥ 0 ρ

(5.5)

Let L be the Lagrangian and ṽ the solution to (5.5), then, with (ψ, λ, ρ), the
following KKT conditions hold:

L = Ck(v) + vTxk + (Λf − v)Tψ + (d̄− Γf)Tλ+−fTρ

∇vL = ∇Ck(ṽ) + xk − ψ = 0 or
d

dva
Ck
a (ṽa) + xka − ψa = 0 ∀a ∈ A (5.6)

∇fL = ΛTψ − ΓTλ− ρ = 0 or
∑
a∈A

ψaδar − λw − ρr = 0 ∀r ∈ Rw,∀w ∈ W(5.7)

fTρ = 0 or ρrfr = 0 ∀r ∈ R (5.8)
ρ ≥ 0, f ≥ 0

Observe that the only difference between the GL’s and the stakeholder’s KKT
conditions is in Eqs.(5.2) and (5.6). Now, the GL can choose taxes xk ∀k ∈ K
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such that the actors’ optimal strategies coincide with the optimal strategy v̄ of
the GL. We define the optimal strategy v̄ of the GL to be the solution to the GL’s
problem (5.1). To force Eq.(5.6) to be exactly the same as Eq.(5.2), i.e

∇Ck(v)
∣∣∣
v=ṽ

+ xk − ψ =
∑
k∈K
∇Ck(v)

∣∣∣∣∣∣
v=v̄

− ψ̄

xk =
∑
k∈K
∇Ck(v)

∣∣∣∣∣∣
v=v̄

− ∇Ck(v)
∣∣∣
v=ṽ

+ ψ − ψ̄

To achieve this, for each k we can choose the same flow vk = ṽ = v̄ and ψ = ψ̄ ,
and choose the taxes

xk =
∑
l∈K\k

∇C l(v)

∣∣∣∣∣∣
v̄

(5.9)

Note that by Assumption 1, the convexity assumptions on Ck(v) ensure that the
solutions v̄ and ṽ to programs (5.1) and (5.5) respectively, are unique.
To summarize:

• By our construction, we have shown that if the GL chooses taxes xk ∀k ∈ K
as in (5.9) then the solution strategies ṽ (or the Nash equilibrium outcome
of problem (5.5)) of the all stakeholders in (5.5) coincide with GL solution
v̄ in (5.1).

• So, any toll vector θ̄ which induces v̄ to be a UE can be chosen (e.g. the
first-best toll of the form given in (3.19)) by the first actor (say actor k).
Since the flow vk = ṽ = v̄ is optimal for all actors, it then means that
together with the taxes xk the toll θ̄ is also optimal for other actors, and
therefore, is a cumulative NE toll in the Nash game of section 3.2.2. In fact,
one possible NE toll vectors for the players in the Nash game of section 3.2.2
can be chosen as follows: θ̃k = θ̄ = ∇∑k C

k (v̄) − βt(v̄) (first-best toll of
the form given in (3.19)) and θ̃l = 0 ∀l ∈ K\k assuming that actor k makes
the first move (i.e. actor k is player 1).

Remark: Observe from Eq.(5.6) that a taxing scheme defined by the tax function
vTxk with

xk = ψ̄ − ∇Ck(v)
∣∣∣
v=v̄

(5.10)

where ψ̄ is as defined in grand leader’s problem, is also an optimal Nash inducing
scheme. We call Eqs.(5.9) & (5.10) the first-best taxes.
This means that with the taxes in (5.9) or (5.10), the objectives of the players are
now aligned, and they now pursue common interests. This mechanism is analog-
ous to the first-best pricing where a stakeholder, knowing the road users’ reaction
(user equilibrium), chooses a toll such that the user equilibrium coincides with
his desired flow pattern. So Eq.(5.9) could be called first-best pricing taxes.
Interpretation of the taxes: Now we interpret the tax function vTxk for
actor k ∈ K. The term ∇C l(v) in Eq.(5.9) measures how sensitive actor l’s
objective is to changes in the link flow vector v. A high value of ∇C l(v) means
that the objective Cl(v) of actor l is very sensitive to changes in link volumes
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v, and a low value suggests otherwise. The whole term ∑
l∈K\k∇C l(v) in (5.9)

measures the cumulative change in the objectives (of actors l ∈ K\k) with re-
spective to a unit increase in the link flow v. Consequently, the tax function
vTxk = vT

(∑
l∈K\k∇C l(v)

)
for actor k measures the total change in other act-

ors’ objectives (l ∈ K\k) when the link flow vector is increased at v. A large tax
vTxk on k means that actor k’s “optimal” choice of v contradicts to a large ex-
tent the interests of actors in K\k. In fact, the tax function vTxk is the marginal
cost which actor k ∈ K imposes on the system by not considering other actors’
objectives during his choice of v. Therefore, by taxing actor k the quantity vTxk,
we internalize in his objective, the cost he imposes on other actors, and thereby,
indirectly make him aware of other actors’ objective. In this way, his choice for
the link flow vector v or more precisely, his choice of toll θk, inducing v, is optimal
for the system.
In general, the objective Z(v) = CGL(v) of the Grand leader could be different
from the one stated in Eq.(5.1). Thus, the generalisation of the tax xk given in
Eq.(5.9) for stakeholder k

xk = ∇CGL(v)−∇Ck(v)
∣∣∣
v̄

(5.11)

where v̄ is the optimal flow vector for the Grand leader’s problem.
The tax xk in Eq.(5.11) measures the difference between the sensitivity of the
GL’s objective and the actor k’s objective to changes in the link flow vector v.
This means that each actor is taxed based on how sensitive his objective is to
the link flow vector v, as compared to the sensitivity of the GL’s objective to v
evaluated at v̄. Therefore, actors pay less taxes if there objectives are somewhat
aligned with the objective of the GL, and more taxes if their objectives differ
much from that of the GL. Observe that the tax xk may take a negative value,
this means that actors can actually receive subsidies to play according to the GL’s
desired flow pattern v. Note that the use of subsidies to steer stakeholders’ actions
could lead to a corrupt system, where one or some of the stakeholders would lobby
the Grand leader or the “central government” to use the taxing mechanism in
their favour.

5.2.3 Users problem

With the objective of the stakeholders’ problem of system (4.7) replaced with the
taxed objective in system (5.5), stakeholders compete for optimal tolls to optimize
their individual objectives while ensuring user equilibrium UE. With the taxed
objective, the problem reduces to the usual bi-level toll pricing game. When Nash
equilibrium is reached, then with respect to the cumulative Nash toll, road users
will route themselves to satisfy Wardrop’s or user equilibrium.

5.3 Analysis of the inducing scheme

5.3.1 Flexible taxing scheme

It will be interesting to see if there are other taxing schemes (other than those
defined in Eqs.(5.9) and (5.10)) induce NE and system optimal behaviour among
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the actors. It turns out that as in the first-best tolling mechanism described in
subsection 2.1.6, there are (possibly) infinitely many values for xk in the tax-
ing schemes vTxk(other than those defined in Eqs.(5.9) and (5.10)) that induce
optimal Nash. We define optimal Nash to mean a Nash equilibrium point that co-
incides with the GL’s optimal point. Using the KKT optimality conditions above,
we first note the following corollary
Corollary 8. If ṽ is the optimal flow vector in system (5.5) for actor k ∈ K,
then the following holds:

∑
a∈A

(
d

dva
Ck
a (va)

∣∣∣∣∣
va=ṽa

+ xka

)
δar = λw + ρr ≥ λw ∀r εRw, ∀w εW

∑
a∈A

(
d

dva
Ck
a (va)

∣∣∣∣∣
va=ṽa

+ xka

)
ṽa =

∑
w∈W

λwd̄w

(5.12)

condensed to
ΛT

(
∇Ck(v)

∣∣∣
v=ṽ

+ xk
)
≥ ΓTλ(

∇Ck(v)
∣∣∣
v=ṽ

+ xk
)T
ṽ = d̄Tλ

for some λ ≥ 0. (5.13)

Proof
The proof follows the idea of the first-best toll described in Chapter 3 as well as
the proof for the alternative first-best pricing tolls given in [79, 42]. �

The first line of Eq.(5.12) states that each leader k ∈ K would want each road
user to follow the route that minimizes his (user’s) travel cost with respect to
his (actor’s) objective function. The second line balances the network travel cost
(w.r.t. k’s objective function) The following result on first-best taxes is analogous
to Corollaries 1&2 (in subsections 2.1.6 and 3.2.1 respectively).
Corollary 9. Suppose v̄ solves the GL’s problem (5.1), then, any taxing scheme
vTxk such that xk satisfies the following linear conditions is an optimal Nash
inducing taxing scheme on leader k ∈ K:

ΛT
(
∇Ck(v)

∣∣∣
v=v̄

+ xk
)
≥ ΓTλ(

∇Ck(v)
∣∣∣
v=v̄

+ xk
)T
v̄ = d̄Tλ

for some λ ≥ 0 (5.14)

Proof
The proof follows from Corollary 8. �

Remarks
1. Equations (5.9) and (5.10) directly satisfy condition (5.14).
2. By just knowing the objective Ck(v) of stakeholder k, the flexible taxing

scheme enables the grand leader (with a desired flow pattern v̄) to determine
xk for stakeholder k (see Eq.5.14); In contrary, Equation (5.9) requires that
the GL knows other stakeholders’ objective, and Equation (5.10) yields only
one possible value for xk. The taxing mechanism can be compared with the
usual social taxing scheme where taxes depend on income, and you only
need to know one’s income to compute the tax.
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3. Furthermore, any of the stakeholders can pull out of the road pricing
scheme/game without altering the model.

5.3.2 Secondary objectives on the taxing scheme

Equation (5.14) suggests that we can set secondary objectives on these taxes. The
following has intuitive meaning:

• Keep each actor’s tax as low as possible. This can be achieved by solving
the following linear system:

min
xk

v̄Txk s.t
ΛT

(
∇Ck(v̄) + xk

)
≥ ΓTλ(

∇Ck(v̄) + xk
)T
v̄ = d̄Tλ

∀k εK (5.15)

where v̄ is the GL desired link flow vector. Alternatively, for fairness, the
GL may want to levy a flat tax on all stakeholders, e.g. v̄Txk = M , for big
enough M .

5.4 Coalition among leaders under the mechanism

In game theory and mechanism design, stability of solutions has always been
of great interest. In this section, we would want to investigate how stable the
optimal Nash inducing mechanism is. In particular, if side payments are allowed
for the actors, we would like to know whether the actors will be better off forming
coalitions than staying as a single player in the road pricing game under the taxing
scheme described above.
It turns out that the Nash inducing scheme described above is stable. In particu-
lar, we prove that there is no coalition formed by actors that will lead to a better
pay-off than in the induced Nash scenario. We therefore, state the following:
Lemma 2. With the taxing scheme described above, there does not exist a coali-
tion in which any of the leaders is better off than in the induced Nash scenario
(where each coalition comprises a singleton).
Proof
Suppose such a coalition exists, say with a feasible flow vector v̂ 6= v̄ in which
actor k ∈ K is better off than in the induced Nash scenario (where each coalition
is comprised of a single actor), then, it simply contradicts the already established
fact in subsection 5.2.2 that the induced Nash flow vector v̄ 6= v̂ is the optimal
(idle) flow vector for all leaders under the taxing scheme. Hence, such a coalition
does not exist. In fact, for an arbitrary coalition say of two leaders k and m:
Let

C̃k(v) = Ck(v) + vTxk

C̃m(v) = Cm(v) + vTxm

where

xk =
∑
l∈K\k

∇C l(v)

∣∣∣∣∣∣
v=v̄

, xm =
∑

l∈K\m
∇C l(v)

∣∣∣∣∣∣
v=v̄



82 Chapter 5. Optimal Nash inducing Mechanism

as given in Eq.(5.9) and v̄ is the GL solution (see (5.1)). After coalition, their
objective function is

C̃k(v) + C̃m(v) = Ck(v) + Cm(v) + vT (xk + xm) (5.16)

Given that ṽ ε V minimizes Eq.(5.16), then, KKT conditions for the minimization
problem differ from those of stakeholders’ problem (Eq.5.5) only in ∇vL, which
is now given by:

∇vL = ∇Ck(v)
∣∣∣
v=ṽ

+ ∇Cm(v)|v=ṽ +
∑
l∈K\k

∇C l(v)

∣∣∣∣∣∣
v=v̄

+
∑

l∈K\m
∇C l(v)

∣∣∣∣∣∣
v=v̄

− ψ (5.17)

Where v̄ is the GL’s optimal flow pattern. Since ψ̄ exists for the GL’s problem,
then with ψ = 2ψ̄, see that ṽ = v̄ is a feasible solution for Eq.(5.17), and hence
optimal (see Eq.5.2). Therefore, for ṽ = v̄, Eq.(5.17) becomes

∇vL = 2
( ∑
l∈K
∇Cl(v)

∣∣∣∣∣
v=v̄

)
− 2ψ̄ = 0 (5.18)

due to Eq.(5.2), confirming that the GL’s optimal flow vector v̄ is also optimal
for the coalescing stakeholders, k and m. �

In the taxing scheme described above, we assumed that we can toll all links
without bounds. This is the so called first-best pricing scheme. In the next
section, we discuss the taxing mechanism with toll constraints/bounds. It is
worthwhile stating that when tolls are not allowed on some links (the so called
second-best pricing scheme), we face even a harder problem.

5.5 Optimal Nash inducing scheme for second-best pricing

Due to practical flavour of the second-best road pricing scheme, where only a
subset of network links is allowed to be tolled, we establish in this subsection
results on the second-best scheme for the Nash equilibrium inducing mechanism.
In particular, we would want to know how robust our Nash inducing mechanism
is when the tolls are constrained.

5.5.1 Unbounded non-negative tolls

Here, we will see that the taxing scheme is also applicable when extra conditions
on tolls are present, and the first-best tolls are no longer feasible.

Grand leader’s problem

Suppose, we have the toll constraints θa ≥ 0∀a ∈ A, and θa = 0 ∀a ∈ Y ⊆ A.
As a single-level non-linear program, the bi-level optimization problem (math-
ematical problem with equilibrium conditions - MPEC) can be reformulated as
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follows (see also Eq.2.20):

min
v,θ,λ

∑
k∈K

Ck(v) s.t

ΛT (βt(v) + θ) ≥ ΓTλ
(βt(v) + θ)T v = d̄Tλ

λ ≥ 0
θa ≥ 0 ∀a ∈ A
θa = 0 ∀a ∈ Y
v ∈ V

(5.19)

The objective minimizes the system cost. The first three constraints are the usual
conditions ensuring that resulting flow is in user equilibrium, and the last three
ensure that the resulting flows and tolls are feasible (see also Eq.2.1).

Stakeholders’ problem

Each actor k ∈ K, instead of Eq.(5.5), now solves the following non-linear pro-
gram (see system 3.22):

min
v,θk,λ

Zk(v) = Ck(v) + vTxk

s.t

ΛT

βt(v) +
θk +

∑
l∈K\k

θ̄l

 ≥ ΓTλ

βt(v) +
θk +

∑
l∈K\k

θ̄l

T v = d̄Tλ (5.20)

θka ≥ 0 ∀a ∈ A
θka = 0 ∀a ∈ Y
v ∈ V

λ ≥ 0

If we compare the KKT conditions of systems (5.19) and (5.20) (under the as-
sumption that solutions of (5.19) and (5.20) satisfy the KKT conditions), then
as in section 5.2, we have the following:

• let v̄ be the solution to program (5.19). If the GL chooses taxes xk as in
(5.9), then v̄ is also optimal for all stakeholders’ problems (5.20).

In fact, there is no problem arising from the extra conditions on tolls since system
(5.20) holds for all k ∈ K, so the resulting toll vector θ = ∑

kεK θ
k will satisfy

θa = 0, ∀a ∈ Y (since θka = 0 ∀a ∈ Y ) which means that system (5.20) satis-
fies/captures the toll constraint in the GL’s problem (5.19).

Remarks
The GL’s optimal link toll vector θ̄ is a valid (cumulative) Nash toll vector for
the actors (recall the optimal Nash inducing scheme), i.e., θk = θ̄ and θl = 0 for
l 6= k yields a NE (inducing flow v̄).
One possible optimal toll vector for the actors is θ̃k = θ̄ and θ̃l = 0 ∀l ∈ K\k
assuming that actor k makes the first move (i.e. actor k is player 1). Though
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these optimal link tolls are not unique in general, a toll vector θ̃k ∀k ∈ K is Nash
optimal for the actors if the cumulative Nash toll ∑k∈K θ̃

k
a = θa ∀a ∈ A yields

the unique flow vector v̄ that solves the GL’s problem (5.19).

5.5.2 Bounded tolls

We consider further constraints on the tolls, for example, upper bound constraints
requiring that θa ≤ φa ∀a ∈ A; with φa ∈ R+. In this case, and for equity reasons,
one may assume that each stakeholder has a link toll bound given by: φka = φa

|K| .
In fact, we make the following observation:

1. Any link toll vector θ̄a ≤ φa ∀a ∈ A that yields the unique flow vector v̄
which solves the GL’s problem (5.19) is also a valid Nash link toll vector
for the actors, with ∑

k∈K
θ̃ka = θ̄a ∀a ∈ A (5.21)

irrespective of how θ̄a is distributed among the actors.
2. The toll vectors θ̃ in 1 are in general not unique. This means that a link toll

outcome of the actors’ Nash game may be optimal and at the same time
not sum up to the pre-calculated GL’s toll as in Equation (5.21).

3. As stated in 2, even though these link tolls are not unique in general, but
then, a toll vector θ̃k ∀k ∈ K is Nash optimal for the actors if the cumulative
Nash toll ∑k∈K θ̃

k
a = θa ∀a ∈ A yields the unique flow vector v̄ that solves

the GL’s problem (5.19).

General application of the optimal Nash equilibrium inducing mech-
anism
The optimal inducing mechanism can also be used to induce a system optimal
performance in the following scenarios:

1. Malicious nodes in car to car communication where cars exchange data/information
within a limited time frame.

In telecommunication networks where cars equipped with sensors, ex-
change (say) traffic and environmental information (such as weather,
road closure, accidents and so on), it is assumed that “rational” cars
will send a piece of information depending on what they get in return.
This decision is made within a limited time since the cars are in mo-
tion and have limited radius of broadcast. This means that car “A”
will “only” send valuable data to car “B” if car “A” gets somehow a
worthwhile data in return. This type of model, of course, may not
be socially optimal, so by using our mechanism, we can induce a sys-
tem optimal data exchange between the cars by making the system
optimal data exchange the optimal strategies for the cars (Schwartz
et al. [58, 56, 55, 57]).

2. Local authorities tolling separate regions of the network.
As we explained in our taxing scheme, the GL now will be the federal
government asking each local authority to pay tax to the federal gov-
ernment based on the tolls they collect on these roads. But then, these
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taxes will be chosen in a way to induce optimal road tolls among these
local authorities. The induced optimal tolls are such that the entire
nation’s network flow is optimized or at least enables the optimization
of the GL’s objective.

3. Energy producers in the energy market liberalization problem.
Governments can force energy marketers to set prices that are socially
desirable using the taxing scheme model. The government will tax
marketers’ profit in a way that if they try to maximize their profit,
they will end up setting the socially desired price.

4. Agents in the principal-agent model.
Principal will set tax on agents’ income such that agents’ optimal
salary quotations will be the desired amount that the principal is will-
ing to pay.

5. Internet providers in the providers-subscribers Internet price setting prob-
lem. As in 3

6. Competition of firms over the same market shares. As in 3
7. Employees that have flexibility on the number of workdays.

Employer will set taxes based on the number of working hours in a
way that when the employees try to maximize their net income, they
will end up working exactly the number of working hours desired by
the employer.

5.6 Summary and conclusions

Following our demonstration in chapter 4 that both pure and mixed Nash equilib-
rium may not exist for the road pricing game, we have developed in this chapter
a mechanism that simultaneously induces a pure NE and cooperative behaviour
among actors, thus, yielding optimal tolls for the system. In the concluding part
of the chapter, we enumerate many other applications that can mimic our optimal
mechanism design.
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Chapter 6

A comparison of genetic algorithm with our game
theoretical approach in solving multi-objective
problems

6.1 Introduction

As we already mentioned, road tolling/pricing is a well-accepted technique in
transportation economics to combat traffic externalities such as congestion, emis-
sion, noise, or safety issues. The problem is how much to toll on which road
segment such that traffic is efficiently distributed in a given network. Efficiency
here refers to a traffic pattern that optimizes the externalities of interest. Since
the mentioned traffic externalities may very well be in conflict with each other,
a toll pattern and hence a traffic pattern that optimizes one externality may de-
teriorate other externalities. Consequently, there is no specific toll pattern that
is best for all objectives. For this reason, it may be desirable to list all non-
dominated (”Pareto optimal”) solutions. These solutions can then be presen-
ted to the decision or policy makers as possible candidate solution(s). In other
words, we want to solve a general multi-objective problem (MOPs) using the
game mechanism we described earlier in this thesis. The fact that almost all
known (genetic) algorithms for solving MOPs depend on Pareto dominance to
generate non-dominated solutions makes it so difficult to solve MOPs when the
objective number exceeds four. The algorithms begin to deteriorate in efficiency
as the objective number increases. The game mechanism we describe does not
deteriorate with objective number, and has nothing to do with Pareto dominance,
so it could be a promising tool for solving multi-objective problems.
Genetic algorithms (GAs) are widely accepted by researchers as a method of
solving multi-objective optimization problems, at least for listing a high quality
approximation of the Pareto front of an MOP. Many researchers have turned at-
tention to solving multi-objective problems using genetic algorithms (GAs) over
the recent years. This is mostly because of their robustness in listing layers of
Pareto fronts using the so called Pareto ranking. The interested reader may con-
sult [14] for a general review of the field of GAs in multi-objective optimization
and [15] for an extensive description of the field. The articles discuss some of the
most representative algorithms that have been developed so far, as well as some
of their applications. Methodological issues related to the use of multi-objective
evolutionary algorithms, as well as some of the current and future research trends
in the area are discussed in [14]. Our motivation for this Chapter stems from the
recommendation in [14] to seek for “alternative mechanisms into an evolutionary
algorithm to generate non-dominated solutions without relying on Pareto ranking
(e.g., adopting concepts from game theory)”. There have been efforts to incor-
porate game theory to enhance the performance of GAs. In order to force a GA

87
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to list Nash equilibrium points, [59] developed an algorithm that merges GAs
and Nash strategy. Application of such merge to domain decomposition method
(DDM) - nozzle optimization problems is studied in [48]. Other applications can
be found in [13, 53]. GAs have been used to find solutions to some game theoretic
problems [26]. In their paper [26], they used a GA to find the optimal strategy of
players in a given game. On the other hand, game theorists have incorporated the
idea of evolution into game theory in what is now known as an evolutionary game
theory. These efforts to merge the two disciplines, however, fail to look at the
results separately. Therefore, in this Chapter, we address the following: firstly,
we use a game theoretic approach to construct an approximation of the Pareto
front of a multi-objective problem, and secondly, we compare this Pareto front
with a Pareto front that is constructed by the well-known genetic algorithm, non-
dominated sorting genetic algorithm II (NSGA-II ). NSGA-II is a widely accepted
GA that has been used by researchers and is developed in [16].

The remainder of the Chapter is organized as follows: section 6.2 gives the gen-
eral overview of traffic externalities and road pricing. Section 6.3 describes the
problem, and the solution methods employed: NSGA-II and game theoretical ap-
proaches. In section 6.4, we demonstrate our models using a numerical example,
and finally, section 6.5 concludes the Chapter.

6.2 Traffic externalities and road pricing

Over the past years, vehicle ownership has increased tremendously. It has been
realized that the social cost of owning and driving a vehicle does not only include
the purchase, fuel, and maintenance fees, but also the cost of man hour loss to
congestion and road maintenance, costs of health issues resulting from accidents,
exposure to poisonous compounds from car exhaust pipes, and high noise level
from vehicles. So, optimizing traffic flow requires a model that optimizes several
objectives, which may conflict with each other. Optimization of more than one
traffic externality is not a novel idea, but what is novel is that we are using a
game theoretical approach to list elements in the solution space. The motivation
for solving the multi-objective problem using a game theoretical approach stems
from the limitations and critics arising from the traditional way of modelling road
pricing. In Chapter 3, we model the road pricing as a multi-leader Stackelberg
game where the leaders represent the objectives (or the road traffic externalities)
and compete for toll patterns that satisfy their individual interests. At the lower
level, are the road users. For a full description of the game, the reader is referred
to Chapter 3.

In addition to results in Chapter 3, we would like to investigate in this Chapter
if the game theoretic approach can be used to list Pareto solution of a multi-
objective optimization problem. And if yes, how would the results from the
game compare with the results of the multi-objective optimization using genetic
algorithms? In what follows, we provide a brief explanation of the solution meth-
ods we have used in this Chapter.
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6.2.1 General traffic model and Pareto optimality

Let G = (N,A) be a network, with N the set of all nodes and A the set of
(directed) arcs or links in G. We use again the notations and the flow feasibility
conditions of section 2.1.5.
We compare the NE game with the following multi-objective model:
The variable of this model is θ with objectives Ψk(θ) defined by

Ψk(θ) = min
v
Ck(v) s.t. v is user equilibrium w.r.t. βt(v) + θ

where βt(v) is the vector of link travel time cost (compare with the NE game of
section 3.2.2).
But then, since for a given θ the user equilibrium v(θ) is uniquely determined by
θ, we have that

Ψk(θ) = Ck (v (θ))

Therefore, in this model, a toll vector θ̄ is Pareto optimal (or non-dominated) if
and only if there does not exist any other solution vector θ such that the following
holds:

Ck (v (θ)) ≤ Ck(v
(
θ̄
)
) ∀k ∈ K and

Cj(v (θ)) < Cj(v
(
θ̄
)
) for at least one j ∈ K

The set of all Pareto points (sometimes called efficient points) to a multi-objective
optimization problem is called the Pareto or efficient frontier [34]: these solution
points form the Pareto-optimal set P.

6.3 Solution methods

6.3.1 The game theoretic approach

As described in Chapter 3, the road pricing game is always formulated as a
Stackelberg game where a leader (system controller) moves first, followed by
sequential moves of other players (road users) [62, 63, 43]. When we have just
one (or a weighted sum of distinct) objective, then it is assumed that only one
leader stays at the upper level of the road pricing bi-level game. In practice, it
always a difficult question to know when a trade-off between conflicting objectives
is beneficial for multi-objective problems. Moreover, actors (stakeholders, leaders
and actors are used interchangeably) have preferred objectives, and would want
their preferred objectives to have more weights in the weighted sum optimization.
So, a solution that favours one stakeholder may be to the detriment of another
player. In this Chapter, we adopt the game theoretic model in Chapter 3 where
each actor is modelled to control/optimize one externality. In that Chapter, we
assume that various stakeholders can influence (or at least propose) the network
tolls. In that situation, road users are influenced not only by just one leader as in a
standard Stackelberg game, but by more than one decision maker. In the multi-
leader-multi-follower game/problem, the leaders, turn by turn, make decisions
(search for toll vectors that optimize their respective objectives of interest) at



90 Chapter 6. A comparison of GA with game approach in solving MOPs

the upper level, thereby influencing the followers (users) at the lower level. A
toll decision from the upper level is added to the network in the form of road
tolls, consequently adding to the travel costs for these roads. The followers then
react according to user or Wardrop’s equilibrium - a traffic condition where no
user has any incentive to switch routes. This in turn may cause the leaders to
update their individual decisions (that is, changing their toll patterns) leading
to lower level reactions again. Note that when an actor tolls the network in a
manner that optimizes his concerned externality, the users perceive these tolls
(as added travel costs) and re-route themselves to satisfy Wardrop’s equilibrium.
Then the next actor in turn seeing the new state of the system, and the level
of tolls set by previous actors, now updates his toll (decision/strategy) to ensure
that given the current situation, his present toll level is the best he can do to
optimize his objective. These updates in the upper and lower level continue until
a stable situation or maximum number of assigned iterations is reached. A stable
(Nash equilibrium) state is reached if no stakeholder can improve his objective by
unilaterally changing his proposed toll. Note, however, that given the stable state
decision tolls of leaders, the lower level stable situation is given by the Wardrop’s
equilibrium. Therefore, the tolling game is now seen as a bi-level problem, with
the stakeholders in the upper level and the travellers in the lower level. The lower
level is a constraint to the upper level. In the above dynamic non-cooperative
scenario, each actor continuously solves a program with equilibrium conditions,
which is influenced by other actors’ programs with equilibrium conditions, and
these translate to an equilibrium problem subject to equilibrium conditions.

Figure 6.1: A diagram representing the dynamic game model

Note that the push by actors to optimize their objectives in every turn gives a
potential to enlisting non-dominated solutions or points in every play. Our aim in
this Chapter is to keep track of the attained solution during this dynamic game,
construct a Pareto front from these attained solutions and compare it with the
solution of the same problem solved using genetic algorithm NSGA-II. For the
analysis of Nash equilibrium solution of the road pricing game, see Chapter 4.
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Mathematical formulation of the game theoretical approach

Adopting the game model in Chapter 3, and using the Beckmann’s convex for-
mulation of Wardrop’s user equilibrium (UE) [7], each actor k ∈ K now solves
the following bi-level problem:

min
θk

Ck(v(θk))
s.t

FeC−FD

min
vka

∑
a∈A

vká

0

(
βta(u) + θk + ∑

j∈K\k
θ̄j
)
du

(6.1)

Where Ck(v(θk)) is the player k’s objective of interest, which depends on the net-
work flow pattern v(θk), θk is the link toll vector of player k ∈ K, and ∑j∈K\k θ̄

j

denote cumulative toll vectors in K\k. Note that player k cannot change this
sum. Instead, given this sum, he optimizes his objective using θk. The first
constraint FeC_FD ensures that the resulting flow is feasible, while the second
(also called the lower level problem) ensures that the feasible flow is in user (or
Wardrop’s) equilibrium [7]. To simplify notations, we will mostly write v to mean
v(θ).
Since the outcome of the lower level problem of Eq.(6.1) determines the input
vector vk for the objective Ck(vk) and knowing that this determinant (lower level
problem) is given by the Beckmann’s formulation in Eq.(6.1), player k ∈ K thus
chooses his toll θk in a way that optimizes his objective Ck(vk). In fact, Eq.(6.1)
yields a feasible link flow vector v for every vector sum ∑

k εK θ̄
k .

For every play and for every turn, the corresponding objective values for all
considered objectives are saved during the game.

6.3.2 Genetic algorithmic approach

The NSGA-II algorithm, developed in [16], is a multi-objective optimization al-
gorithm that optimizes several objectives simultaneously, searching for a set of
non-dominated solutions, or the Pareto optimal set. It is a genetic algorithm, so
based on the principles of natural selection within evolution, it combines solu-
tions to new solutions (crossover), where the solutions with higher fitness values
have higher chances to survive over worse solutions. In the next generation, these
enhanced solutions are recombined again, until no progress is made any more
or until the maximum number of iterations H is reached. Within NSGA-II, the
mating selection is done by binary tournament selection with replacement. All
selected parents mate using uniform crossover as the crossover operator. In addi-
tion to this mating process, a random mutation operator is applied to a limited
number of solutions from each generation, to promote the exploration of different
regions in the solution space. In our case, mutation rate was set to 0.03, so for
every design variable, there is a 0.03 chance that it is mutated. If a design variable
is mutated, it is randomly set to a new feasible value. Evolutionary algorithms
are often used to solve multi-objective problems, because they do not end up in
a local minimum, and do not require the calculation of a gradient, and still are
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able to produce a diverse Pareto set. More information on genetic algorithms in
a multi-objective context can be found in [15].
Within the algorithm, the fitness value is calculated in two steps. In the first step
(non-dominated sorting), the solutions are ranked based on Pareto dominance.
All solutions in the Pareto front receive rank 1. These solutions are then removed,
and all Pareto solutions in the remaining set receive rank 2, etcetera. In the second
step, the solutions are sorted within these ranks based on their crowding distance.
The crowding distance calculation requires sorting of the population according
to each objective value. The extreme values for each objective are assigned an
infinite value, assuring that these values survive. All intermediate solutions are
assigned a value equal to the absolute difference in the function values of two
adjacent solutions. The crowding distance value (and thus the fitness value) is
higher if a solution is more isolated, promoting a more diverse Pareto optimal set.
NSGA-II contains elitism, to preserve good solutions in an archive ϕ. The archive
only contains the best solutions based on the defined fitness value. This implies
that in case the number of non-dominated solutions grows bigger than the archive
size, solutions are selected based on crowding distance instead of dominance. For
details on the algorithm, the reader is referred to [16].
The objectives optimized in system (6.1) are all system objectives, for which the
Pareto set is constructed. NSGA-II is designed to construct a diverse set, so con-
taining solutions with low (assuming that objectives correspond to costs) values
for the first objective, but also solutions with low values for the other objectives.
It aims at showing the complete spectrum of possible solutions, giving attention
to all objectives (or players in the game approach). However, the travellers in the
traffic system optimize their own benefits (costs in the form of tolls and travel
time) in a similar way as in the game approach: they achieve user equilibrium.
Therefore, the toll design problem is now seen as a bi-level problem, with the road
authority in the upper level and the travellers in the lower level. The lower level is
a constraint to the upper level. For every solution the genetic algorithm comes up
with, a lower level user equilibrium problem is solved, resulting in network flows
and costs, from which the objective functions can be calculated. This process is
then repeated over and over again until no progress is made any more or until
the maximum number of iterations is reached. Using NSGA-II as a yardstick,
the results of our game model are then compared to those of the NSGA-II.

Mathematical formulation of genetic algorithm approach
Mathematically, the toll optimization problem for the NSGA-II is different from
the game theoretic approach given in Eq.(6.1) in the sense that the tolls are not
differentiated between the objectives. NSGA-II selects one generic toll θ per link
to optimize the objectives simultaneously. For NSGA-II, the modified version of
Eq.(6.1) is formulated as follows:

min
θ

(
C1(v(θ)), C2(v(θ)), · · · , C |K|(v(θ))

)
s.t

FeC−FD

min
va

∑
a∈A

vá

0
(βta(u) + θ) du

(6.2)
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FeC_FD is as given in Eq.(7.76), and |K| denotes the total number of objectives
(corresponding to players in the game approach). Again, the second constraint
(the lower level problem) is the Beckmann’s convex formulation of Wardrop’s
user equilibrium (UE). It ensures that any feasible solution flow v resulting from
system (6.2) is in a user equilibrium: a condition where no individual road user
reduces his or her travel cost by unilaterally switching routes.
Note that NSGA-II has been applied successfully by researchers to solve a multi-
objective optimization problem in traffic engineering, e.g. [75, 60].

6.4 Numerical results

6.4.1 Link attributes and input

We will use a five-node network to compare the two models described in the
preceding sections. We demonstrate the first-best pricing scheme - where tolls
are allowed on all links. For the second-best scheme - where some links are not
allowed to be tolled, one only needs to add the additional toll constraints on the
links.
The origin-destination demand for the example network is 1000 users.

Table 6.1: Network Attributes

Link Attributes (vehicle class: private cars)
Length Free Speed Link Emission cost Emission cost Safety factor

Links (km) (km/hr) capacity NOx(€/gram) PM10(€/gram) (injury per veh-km)

1 10 100 400 10 5 0.008

2 7 70 300 10 5 0.08

3 10.5 100 350 45 40 0.008

4 5 70 200 60 60 0.00001

5 4 70 250 45 40 0.00001

6 10 90 250 10 5 0.09

7 5 80 250 10 5 0.009

8 8.5 90 300 45 40 0.009

Emission factors (g/km/veh)
Speed (km/hr) NOx PM10

< 15 0.702 0.061
≤ 30 0.456 0.059
≤ 45 0.48 0.059
< 65 0.227 0.035
≥ 65 0.236 0.043

We have chosen three externalities/objective namely:
System Travel Time Cost:
Ct(v) = ∑

a εA
βvata(va) = ∑

a εA
βvaT

ff
a

(
1 + η

(
va
Ĉa

)φ)
;

the so called Bureau for Public Roads (BPR) function, where
T ffa - free flow travel time on link a,
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va - total flow on link a,
Ĉa - practical capacity of link a, and
η and φ - BPR scaling parameters, with η = 0.15, φ = 4.
β is the value of time (VOT) with the value 0.167EUR / minute [4], see Table
6.1 for other parameters.

Emission Cost:
Ce(v) = ∑

a εA
vaαaκala; where

κa - emission factor for link a (depending on the emission type and the vehicle
speed on link a given in g/vehicle-kilometre).
la - length of link a. In this case study, we only consider two emission types; NOx

and PM10.
See Table 6.1 for the emission costs αa and emission factor κa.

Safety Cost:
Cs(v) = ∑

a εA
va%κala ; where

κa - risk factor for link a, measured in the number of injury-crashes/vehicle-
kilometre (see Table 6.1).
Ea = la ∗ va - measure of level of exposure on link a.
We set the cost of one injury % to 300EUR / injury.
Emission factors are from the CAR-model [25], emission and injury costs are
chosen in a reasonable way.
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Figure 6.2: The five-node network with eight links

MATLAB is used to solve all programs. We solve the non-cooperative (Nash)
game between the actors using the NIRA-3 [31]. NIRA-3 is a MATLAB package
that uses the Nikaido-Isoda function and relaxation algorithm to find unique Nash
equilibria in infinite games. An interested reader may also wish to see [30] for
an evolutionary algorithm for equilibrium problem with equilibrium constraints
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(EPECs). In NIRA-3, we set alphamethod = 0.5, precision = [1e-3, 1e-3], and
TolCon = TolFun = TolX = 1e-3. For more on the NIRA-3 see [31].

For the game, we place a toll bound condition of [0,5]EUR per link per player to
limit the solution space. Since NSGA-II has discrete design variables as input,
the tolls are discretised with steps of 0.1 EUR. In the game problem, each of
the three players could vary the toll within the interval [0, 5], making the total
toll of the three players to vary within 0 EUR and 15 EUR per link. In NSGA-
II application, this translates to eight design variables (one for each link) with
151 different possible toll values from the set {0.0, 0.1, . . . ,14.9, 15.0} for each
link. Note that in NSGA-II application, the tolls are not differentiated between
the objectives unlike in the game approach where each player has control over a
specific toll range, i.e [0, 5] per link. To search for non-dominant solutions, the
NSGA-II application uses a whole (discritised) toll range of [0, 15] per link, which
corresponds to three players total toll range per link in the game approach.

Within this application of NSGA-II, every solution in the parent generation will
combine to new solutions, so the crossover parameter is set to 1 (a chance of 1 to
crossover). The initial chance for a toll value to mutate is set to 0.03. For every
generation, this chance is reduced by 5%, in order to achieve convergence.

All three objectives are simultaneously optimized in NSGA-II, and all the three
players compete in turns in the non-cooperative game. All calculations were
conducted on MATLAB version 9 running on a 64-bit Windows 7 machine with
4 GB of RAM.

6.4.2 Results

Definitions
Output definitions: The set Θ is defined as all decision vectors (or solutions)
that are calculated during one optimization process, so |Θ| = ϕH. Where ϕ is the
size of the archive in one optimization process, and H is the maximum number
of generations. N is the cardinality of the Pareto set. The set of N solutions
P ∈ Θ with P = {v1, v2, · · · , vN} is defined as the Pareto set resulting from one
optimization process, which includes all non-dominated solutions with respect to
all solutions in Θ, there is no vi ∈ P such that vj ∈ Θ dominates vi. P is the
outcome of our MOP.

Hypervolume indicator: This is the space coverage of the Pareto set as im-
plemented in [73], also known as S-metric or hypervolume. In the 2-dimensional
case, it determines the area that is covered by the Pareto set with respect to a
reference point (the star in Figure 6.3). The reference point represents the upper
bound of all objectives: the reference point is defined such that it is dominated by
all solutions in the Pareto set. Because the true maximum values of the objective
functions are not known, we choose a conservative point, based on the evaluated
solutions. In the 3-dimensional case, area is replaced by volume, and in the more
dimensional case by hypervolume. The area or the hypervolume covered by the
Pareto set P is denoted by SSC(P) in the figure below.
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Figure 6.3: Hypervolume 2-D visualisation

In the non-cooperative game model, for every play and for every turn, the cor-
responding objective values for all considered objectives are saved. Similarly, the
multi-objective optimization results from the NSGA-II are saved for every iter-
ation. For easy visualization, we have displayed the results of the 3-dimensional
optimization process for only two objectives per plot. For the NSGA-II, we al-
lowed 60 solutions to be generated within one generation for hundred generations.
For comparison reasons, we also allowed a maximum of 2000 play turns for each of
the three players in the non-cooperative game model. On the graphs that follow,
we have displayed and compared non-dominated solutions resulting from the two
distinct approaches.
Figure 6.4 shows the Pareto set (or non-dominated solution) plot of the objectives;
total travel time cost and total safety cost for the NSGA-II and game approach.
See that the shapes of the two Pareto plots somewhat take the same U-shape.
The plots show that NSGA-II generated more points in Pareto set. Furthermore,
NSGA-II achieves better values for the safety objective. Apparently, the Safety
player is not capable of achieving much better values while competing with other
players in the game approach. This may be due to the fact that Travel time and
Emission objectives are more in line with the travel cost function determining
the user equilibrium (lower level problem), whereas the Safety objective is rather
unrelated to the users’ criteria. Therefore, during the game, it is easier for the
Travel time and Emission players to achieve better solutions for themselves as
compared to those of the Safety player. This indicates that the objective safety
can only be further minimized if all three players agree to cooperate to have free
access to the complete range of feasible tolls as in NSGA-II. That notwithstand-
ing, the game approach does not fail in producing non-dominated solutions as
we can see from the Pareto set plots. Recall that we have displayed the res-
ults of the 3-dimensional optimization process for only two objectives per plot,
so some points that seem dominated are actually projections of non-dominated
solutions.



6.4 Numerical results 97

0 0.5 1 1.5 2 2.5

x 10
5

0

1

2

3

4

5

6

7
x 10

4

Safety (€)

T
ot

al
 t

ra
ve

l t
im

e 
(€

)

 

 
Pareto set NSGA-II
Pareto set Game

Figure 6.4: Pareto set of Travel time cost vs Safety cost from NSGA-II and Non-
cooperative game

Similar as in Figure 6.4, we have displayed again a Pareto set plot of total travel
time cost and total emission cost in Figure 6.5. The figure shows once more a
more diverse plot by NSGA-II, note, however, that the differences seen in one
figure are the same for all other figures, but displayed in different axis. Figure
6.6 displays the Pareto plots in the axis of total emission cost and total safety
cost. What is interesting from the figures is that the game approach is almost
able to discover all non-dominated plot clusters as displayed by the NSGA-II.
We mention here that the game model is more constrained than the NSGA-II
counterpart in the sense that NSGA-II has access to a whole toll spectrum [0,
15] per link to optimize the three objectives simultaneously, whereas the game
approach restricts a toll range of [0, 5] per player per link. If we design the
game as a cooperative game instead of the non-cooperative game, then the three
players will now have access to an entire toll spectrum [0, 15] per link to optimize
their three objectives at the same time just as in NSGA-II. However, our aim
in this Chapter is to demonstrate that non-cooperative game model presents a
promising way of solving multi-objective problems. In fact, the NSGA-II seems
to be solving the cooperative game version of the game approach where all the
players cooperate, use their combined toll ranges, and simultaneously do what is
beneficial for all players.
Despite the “constrained” nature of the game approach, the non-cooperative game
approach is capable of producing non-dominated solutions comparable to the
NSGA-II results. This reveals that the game approach has a great potential in
enlisting non-dominated solutions for multi-objective problems. Note that in
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Figure 6.5: Pareto set of Travel time cost vs Emission cost from NSGA-II and
Non-cooperative game
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Figure 6.6: Pareto set of Emission cost vs Safety cost from NSGA-II and Non-
cooperative game
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general, with more solutions and iterations allowed, both the NSGA-II and the
game approach have the potential of improving on the Pareto fronts. For the two
approaches, we show below (Figure 6.7 and Figure 6.8) plots of all the generated
solutions and a summary table (Table 6.2). The plots show that a range of
non-dominated solutions is generated during the game. Furthermore, Figure
6.7 shows that almost all generated solutions are in the neighbourhood of the
Pareto set, indicating that the non-dominated solutions are generated early in the
optimization process, and further asserts the consistency of the game approach.
This is also underpinned by the notion that some of the solution points replicated
themselves many times during the game, due to the nature of the game where
after some moves, a player will prefer to choose a set of tolls he had chosen earlier
in the game. This further indicates that the game already reached convergence
in less than 6000 iterations. As a result, the game approach generated a smaller
number of Pareto solutions. In contrast, NSGA-II covers a larger solution area or
hypervolume, good portions of its generated solutions are very far from the Pareto
front though. However, NSGA-II in the end achieves a more diverse and richer
Pareto set, as indicated by the lower (and thus better) values for the minimum
objective function values for all three objectives, the higher value for hypervolume
covered and the comparison plots.
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Figure 6.7: All solutions from Non-cooperative game approach
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Figure 6.8: All solutions from NSGA-II approach

The summary table further shows that the game approach generated fewer Pareto
points. Note, however, that some of these solution points (some of which are
Pareto points) replicated themselves many times during the game. This is due to
the nature of the game (as earlier mentioned) where after some moves, a player
will prefer to choose a set of tolls he had chosen earlier in the game.

Table 6.2: Solution summary

Game NSGA-II
Number of solutions in the Pareto set 101 794
Minimum value for travel time 2391 2389
Minimum value for emission 63367 60930
Minimum value for safety 88240 46894
Hypervolume covered by the set 6.22E+15 7.08E+15
Time taken to run (mins) 3 11

6.5 Conclusion

In this Chapter, we compared the results of a multi-objective optimization using
two distinct approaches, namely; the well-known genetic algorithm NSGA-II and
a model from non-cooperative game theory. We applied these techniques to the
problem of optimal toll design in a transportation network, with total travel time,
total emission cost and total cost of safety as objectives. In the game theoretic ap-
proach, every objective is optimized by one of the players, while the travellers aim
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for user equilibrium. The results show that the game approach has the potential
of discovering non-dominated solutions and can be used to solve multi-objective
optimization problems. Though NSGA-II produces a more diverse Pareto set
(seen in the plots and based on the hypervolume indicator), the game theoretic
approach tends to approximate the NSGA-II solutions. The figures showed that
similar clusters of Pareto points could be discovered by the game approach, ex-
cept for the objective safety, because safety directly competes with the interests
of the users. Further, plotting all solutions generated during the game showed
that most dominated solutions still lie in the neighbourhood of the Pareto front,
asserting the consistency of the game approach. This implies that good solutions
are generated at an early stage during the game.
Although the Nash game model does not ensure that all non-dominated solutions
are generated, the competition among the actors (where each actor searches for
the best solution given what other actors are doing) tends to draw the solu-
tion points near to the Pareto front. On the other hand, MOPs algorithms (for
example NSGA-II ) begin to deteriorate in efficiency as the objective number in-
creases since these algorithms depend on Pareto dominance to generate Pareto
solution. The game mechanism we describe does not deteriorate with the number
of objective, and has nothing to do with Pareto dominance. We thus conclude
that the game theoretical approach presents a promising method for quick gener-
ation of non-dominated solutions for multi-objective problems. We acknowledge
that Nash equilibrium solutions may not be Pareto efficient though.
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Chapter 7

An Origin–destination based road pricing model for
static and multi-period traffic assignment problems

7.1 Introduction

Over the years, researchers have focused on link-based tolling schemes [77, 67, 79].
Implementations also have focused on link-based or route-based charges. This is
mainly because with link-based tolls, theoretically, one can optimally shift traffic
in time. Issues ranging from fairness to financial, and from political to practical
matters have long been associated with the practicality of the link-based and
route-based pricing [35]. Some of these issues can easily be dealt with in an
origin–destination (OD) based pricing scheme [45]. An OD-based road pricing is
when users are charged based on their origin destination (OD) information. This
means that all routes connecting the same OD will be charged the same amount
irrespective of their lengths.

The merits discussed in section 7.1.1 form the basis of the motivation to study
this novel road pricing scheme. In addition to the best of the author’s knowledge,
a pricing scheme that tolls the network based on origin–destination information
has not been investigated before. In the case of elastic demand, the OD-tolls
regulate the overall demand. When demand is fixed, the OD-based toll has no
effect on the route choice of the road users since all users belonging to one OD
pair are charged the same, and the fixed total demand must be realised. In this
way, users travel according to Wardrop’s equilibrium regardless of the tolls. In
reality, what one observes is the different travel pattern for different periods of
the day: the peak and off-peak periods. These periods could be modelled as a
multi-period static traffic assignment, and the proposed OD-toll scheme can play
an important role in shifting periodic demands. In the case of a multi-period
fixed demand, the OD-tolls regulate the overall shift of demand, i.e. departure
times by congestion pricing. In the first part of this Chapter, we will focus on an
elastic or variable demand model where the traffic demands for a given modelling
horizon depends on the so called inverse demand (or benefit) function and on
the associated travel cost [77, 79]. In the second part, we will then derive a
route-based pricing scheme and subsequently, an OD-based pricing scheme for a
multi-period fixed demand model.

We assume that the OD-toll information will be provided to the general public
so that the amount of tolls charged for a trip is known to the trip maker prior
the trip.

103
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7.1.1 Merits of the OD-based pricing scheme

An OD-based road pricing is when users are charged based on their origin des-
tination (OD) information. This means that all routes connecting the same OD
will be charged the same amount irrespective of their lengths. In fact, postal
codes can serve as the origin destination nodes. For feasibility of such scheme,
it is assumed that cars travel with a tracking system (for example GPS) that
identifies the position of a car at any origin or destination node. The OD-based
road pricing may have the following merits:

1. Almost all large cities with successful public transport (PT) operate some
kind of zone-based fare system [49]. So, most merits of the PT system can
be transferred to the OD-based pricing scheme.

2. It is important for public transport since it encourages intra-mode transfer,
and would increase the mode share of public transport.

3. It is could be easy to implement since every car just needs to get equipped
with the instrument. One would argue that with each car equipped with
a tracking system, the route and the links taken by each car are known
and hence the first-best link-based pricing scheme could be implemented
with the same device as for the proposed OD-based pricing scheme. The
answer lies in the fairness/equity feature of the OD-based pricing scheme
as explained in the following merit (merit 4).

4. When temporal road disturbances (such as accidents, road constructions
and repairs) occur, one does not have to pay an extra toll for using a different
route since the charging is OD-based (note that this feature is difficult
to achieve in the link-based toll design). In fact, when a temporal road
disturbance occurs, it will be easy to efficiently redistribute traffic with OD-
based tolls. Link-based scheme lacks this flexibility since one may need to
construct new toll booths in order to redistribute traffic in an efficient way.
Further, implementing the link-based scheme will require that you track and
keep information of all links used during a trip which involves processing
huge amount of data and tampering so much with travellers’ privacy, where
for the OD-based scheme, one only need to keep the origin and destination
information just like in the PT system in The Netherlands. In the OD-based
scheme, the chain of links used to complete a trip is irrelevant.

5. It could be cheaper to implement since we do not have to set toll collection
booths or electronic system in the network. Remember that the first-best
pricing has the possibility of setting tolls on all road segments. Owing to
the impractical nature of such system, the second-best pricing scheme has
gained attention, though this latter scheme does allow some road segments
to be toll free, still the cost of setting and managing a toll booth is very
high. In fact, for privacy and economic reasons, anonymous rechargeable
tracking systems can be used for the OD-based tolling scheme. With such
anonymous tracking system, we do not need that every car owner buys the
said tracking system; many users can use one and the same (anonymous)
tracking equipment for travel, but one user at a time making it a bit difficult
to know who went to a given place at a given time.

6. Sometimes in the link-based tolling scheme, it may be inevitable for a user
to use a tolled link in his day to day activity, for example, due to where
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he lives or works. This often leads to criticism of road pricing for feelings
of unfairness. With an OD-based tolling scheme, such situation does not
arise.

7. No toll booth is needed in the network.
8. An OD-based road pricing scheme is capable of shifting demands (for the

multi-period fixed demand traffic assignment), thus levelling the travel de-
mand curve over time. Hence, with the OD-based pricing, we can efficiently
regulate the demand into a transportation network in case when demand
is elastic, and efficiently shift users from one departure time interval to
another for a multi-period fixed demand model.

7.1.2 Demerits of the OD-based pricing scheme

1. Since all routes connecting the same OD are charged the same amount
irrespective of their lengths, it means that with a given optimized demand
d̄ (ti) during departure time interval ti, road users will route themselves to
be in a user equilibrium UE neglecting the tolls. This is because all routes
connecting the same OD pair have the same toll costs on them, hence these
toll costs do not influence the route choice decision of users. Therefore, the
tolls have basically no effect on the in-time routing or route split of the
users in the network.

2. With onymous tracking systems installed in cars, users face privacy issues
as in the public transport chip card of the Netherlands, or the Octopus card
of Hong Kong.

3. It could be that some users may not perceive the OD-based pricing scheme
as fair owing to the fact that it is not distance based. In fact, in the
proposed OD-based scheme, to induce system optimal flow, it may require
that two OD pairs of equal distances are actually charged differently. This
is a general characteristics of road pricing schemes, where roads/routes are
charged differently irrespective of their lengths in order to achieve a desired
flow pattern.

The Chapter is organised as follows: section 7.2 provides some notations used
in the first part of this Chapter and the derivation of the equilibrium conditions
for the OD-based scheme in a general static transportation network. In Section
7.3, we then formulate the optimization problem for route-based and OD-based
second-best pricing schemes. Further in Section 7.3, explicit formulations of the
OD-based tolls are derived for two and three-link networks, and for general net-
works. In Section 7.4, we provide some numerical examples. The second part of
the Chapter starts off with Section 7.5 where we derive the route-based and OD-
based pricing schemes, and the equilibrium conditions for the multi-period fixed
demand model. In Section 7.6, we present a numerical example for the multi-
period OD-based road pricing scheme, and Section 7.7 concludes the Chapter.

7.2 Notations and feasibility conditions

Let G = (N,A) be a network, with N the set of all nodes, and A the set of
(directed) arcs or links in G. The notations are defined in Table 7.1.



106 Chapter 7. An OD-based road pricing model for static and MSTA

7.2.1 Derivation of OD-based tolls

In this section, we will derive the OD-based road pricing model for variable de-
mand. The derivation is similar to the one given in [79].

(Road) User problem – UP

Without loss of generality, we assume that a road user only considers the costs he
incurs and the benefits he enjoys making a trip. In this way, the only determinant
of user’s route choice behaviour is the travel costs and benefits of a trip.
Mathematically, the user problem can be formulated as a variational inequality
(VI) problem [79, 19, 50, 11, 77] (see also User Problem in section 2.1.6). A given
flow and demand vector

(
f̄ , d̄

)
in user equilibrium if and only if

∑
w

(∑
r

α
(
η̄wr
(
f̄
)) (

fwr − f̄wr
)
−Bw

(
d̄w
) (
dw − d̄w

))
≥ 0 ∀fwr ∈ FeC−ED

where FeC_ED stands for the Feasibility Conditions for Elastic Demand given
below in system (7.1), and η̄w (f) = min

rεRw
{ηwr (f)} is the cost of the shortest

path connecting wth OD pair given the traffic flow pattern f in the network G.
The parameters with the bar signs “−” are fixed. The user problem can then
be written as the following implicit minimization problem: find (f̄ , d̄) such that(
f̄ , d̄

)
solves the following

min
f,d

∑
w

(∑
r

α
(
η̄wr
(
f̄
))
fwr −Bw

(
d̄w
)
dw
)

s.t

v = Λf [ψ]
Γf = d [λ] FeC−ED (7.1)
f ≥ 0 [ρ]
d ≥ 0 [ϑ]

where all variables and parameters are as given in Table 7.1 (we recall some
notations).
The first constraint states that the flow on a link is equal to the sum of all
path flows that pass through this link. The second equation is the flow-OD
balance constraint stating that the demand is met for each OD. The third and
fourth inequalities simply state that the path flows, and OD demands are non-
negative. The non-negativity of link flows follows directly from the fourth con-
straint. (ψ, λ, ρ, ϑ) are the KKT multipliers associated with the constraints.
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Table 7.1: Notation table

A set of all arcs (links) in G
a index for links
R set of all paths
r index for paths (routes)
W set of all OD pairs
w index for OD pairs
f path flow vector
fwr flow on path r belonging to the wthOD pair
v vector of link flows
Γ OD-path incident matrix
Λ arc-path incident matrix
V set of feasible link flows
d travel demand vector
dw demand for the wthOD pair
Rw set of all paths connecting OD pair w
Dw(λw) demand function for the wthOD pair
Bw(dw) inverse demand function for the wthOD pair
η(f) vector of path travel time cost functions
ηwr (f) travel time experienced over route rby users

belonging to the wthOD pair.
α monetary value of time per minute(VOT)

Assumption 2:

• Throughout we assume that the route cost (or travel time) function vector
η(f) is continuous. We further assume that all constraints are differentiable
and continuous and that the inverse demand functions are differentiable,
separable and strictly monotonic.

We now look at the KKT optimality conditions of system (7.1). If we assume
a separable route travel time function ηwr (f) = ηwr (fwr ), and let L be the Lag-
rangian, and f̄ , d̄ be the solution to program (7.1), then there exists (ψ, λ, ρ, ϑ)
such that the following KKT conditions hold:

L =
∑
w

∑
r

α
(
η̄wr
(
f̄
))
fwr −

∑
w

Bw
(
d̄w
)
dw + (Λf − v)Tψ + (d− Γf)Tλ− fTρ

−dTϑ
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∂

∂fwr
L = αη̄wr

(
f̄
)
−
∑
a

ψwa δar − λw − ρwr = 0 ∀w, r ∈ Rw (7.2)

∂

∂vwa
L = ψwa = 0 ∀w, a ∈ A (7.3)

∂

∂dw
L = λw −Bw(d̄w)− ϑw = 0 ∀w (7.4)

f̄wr ρ
w
r = 0 ∀w, r ∈ Rw (7.5)

d̄wϑw = 0 ∀w (7.6)
ρwr , ϑ

w ≥ 0 ∀w, r ∈ Rw (7.7)

Eqs.(7.5) and (7.6) are called the complementarity conditions.
From Eqs.(7.2) and (7.3) we find that

αη̄wr = λw + ρwr = Bw(d̄w) + ϑw + ρwr (due to Eq. 7.4). (7.8)

If the flow on route r ∈ Rw is positive, that is f̄wr > 0 ⇒ d̄w > 0, then the
complementarity conditions in Eqs.(7.5) and (7.6) force the variables ρwr and ϑw
in Eq.(7.8) to be zero. To simplify the notation, we write η̄wr for η̄wr

(
f̄r
w
)
. Recall

that α is the monetary value of time (VOT). Thus, we have the following

αη̄wr = Bw(d̄w) ∀f̄wr > 0, r ∈ Rw, w ∈ W (7.9)

Interpretation: At equilibrium, the travel costs on all used routes for a given
OD pair w ∈ W are the same and equal to the benefit Bw(d̄w) associated with
that trip.
Due to Eq.(7.7), the following holds in general:

αη̄wr ≥ Bw(d̄w) ∀r ∈ Rw, w ∈ W (7.10)

Eq.(7.10) states that, at equilibrium, the travel cost on all routes for a given
OD pair w ∈ W is greater or equal to the benefit derived from making the trip.
Recall from (7.9) that Bw(d̄w) is the benefit on all used paths of r ∈ Rw. We
thus state the following: at equilibrium, the journey cost on all used paths/routes
for a given OD pair are the same and equal to the benefit derived from making
the trip, but also less than those which would be experienced by a single vehicle
on any of the unused paths (Wardrop’s first principle). Therefore, we conclude
that any path flow vector f̄WRw = (f̄wr , r ∈ Rw, w ∈ W ) that solves system (7.1)
is a user equilibrium flow.
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From Eq.(7.8) we get

αη̄wr = Bw(d̄w) + ϑw + ρwr∑
r

αη̄wr f̄
w
r =

∑
r

(
Bw(d̄w) + ϑw + ρwr

)
f̄wr

=
∑
r

(
Bw(d̄w) + ϑw

)
f̄wr (due to Eq. 7.5)

=
(
Bw(d̄w) + ϑw

)∑
r

f̄wr

=
(
Bw(d̄w) + ϑw

)
d̄w

=
(
Bw(d̄w)

)
d̄w (due to Eq. 7.6). (7.11)

Thus ∑
r

αη̄wr f̄
w
r =

(
Bw(d̄w)

)
d̄w ∀w ∈ W (7.12)

Eq.(7.12) is called the network cost balance equation.
Hence, we summarize the optimality conditions as follows:

αη̄wr ≥ Bw(d̄w) ∀r ∈ Rw, w ∈ W∑
r

α (η̄wr ) f̄wr =
[
Bw(d̄w)

]
d̄w ∀w ∈ W (7.13)

We will henceforth refer to Eq.(7.13) as equilibrium condition (EC). A similar
result for the static traffic assignment can be found in [79, 43].
Corollary 1. Any route flow vector (f̄wr , r ∈ Rw, w ∈ W ) satisfying Eq.(7.13)
is a user equilibrated flow.
Proof. The proof follows from the analysis of theKKT optimality conditions. �

Decision maker’s problem (system problem – SP)

The aim or objective of the system controller is to keep the social welfare as high
as possible:
max [Social Welfare (or Economic Benefit (EB))]

s.t
flow feasibility conditions

The Social Welfare or EB is the difference between the User Benefit (UB) and
Social Cost (SC)

EB = UB − SC.

where UB is defined as

UB =
∑
w εW

dwˆ

0

Bw(ς)dς

where Bw(dw) is the inverse demand or benefit function for the OD pair w ∈ W
[77].
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The social cost SC can be travel time cost, noise cost, emission cost, etcetera.
In this specific derivation, we will take SC to be the travel time cost αηTf , where
α is the value of time (VOT), η is the vector of route travel time functions, and
f is the vector of route flows.
The system problem SP can then be stated mathematically as follows:

min
f,d

∑
w

∑
r

α (ηwr (f)) fwr −
∑
w εW

dwˆ

0

Bw(ς)dς


s.t (7.14)

FeC−ED

Given that (f ∗, d∗) solves SP above, then, following the same lines of arguments
as in the previous section on the analysis of the KKT optimality conditions, we
arrive at the following conditions:

α

(
ηw∗r + fw∗r

d

dfwr
(ηw∗r )

)
≥ Bw(dw∗) ∀r ∈ Rw, w ∈ W

∑
r

α

(
ηw∗r + fw∗r

d

dfwr
(ηw∗r )

)
fw∗r = [Bw(dw∗)] dw∗ ∀w ∈ W

(7.15)

7.3 Pricing schemes

7.3.1 Route based pricing scheme

A look at Eqs.(7.13) and (7.15) reveals that the only difference between the
KKT optimality conditions is the presence of the term αfw∗r

d
dfwr

(
ηw∗p

)
in the SP

problem analysis. Therefore, by perturbing the route travel time ηwr with the term
αfw∗r

d
dfwr

(ηw∗r ), users will now use the network in such a way that the resulting
flow coincides with the system optimal flow pattern f ∗, d∗.
This means that if every road user travelling between origin destination pair w
is charged the amount αfw∗r d

dfwr
(ηw∗r ) for using route r ∈ Rw, then, it turns out

that the ‘rational’ route choice decisions f̄ , d̄ by users before embarking on a trip
will coincide with the optimal route flow f ∗, d∗. In fact, the term αfw∗r

d
dfwr

(ηw∗r )
is the marginal social cost pricing (MSCP) for route r ∈ Rw . It is the extra cost
for users of route r ∈ Rw due to an additional user on this route.
For link-based pricing, [79] proved that there exist many link toll vectors that
yield the system optimal flow. The same holds for the route-based toll; in fact,
any route toll vector θr satisfying the linear conditions below will lead to the
system optimal vector (f ∗, d∗):

(αηw∗r + θr) ≥ Bw(dw∗) ∀r ∈ Rw, w ∈ W∑
r

(αηw∗r + θr) fw∗r = [Bw(dw∗)] dw∗ ∀w ∈ W (7.16)



7.3 Pricing schemes 111

7.3.2 The OD-based pricing scheme

Issues ranging from fairness to financial issues, and from political to practical
matters have long been associated with the link-based and route-based pricing
[35]. Some of these issues can easily be dealt with in the proposed OD-based
pricing scheme as discussed in subsection 7.1.1. In this subsection, we present a
mathematical model for generating origin–destination tolls for every OD.
The problem is formulated as a system problem that uses an OD-based toll to
change users’ route choice behaviour towards a system optimal route choice pat-
tern whilst ensuring Wardrop’s (or User) equilibrium. The optimization program
is as follows:

min
v,d,θ

∑
w

∑
r

α (ηwr (f)) fwr −
∑
w εW

dwˆ

0

Bw(ς)dς


s.t

FeC−ED (7.17)
αηwr + θw ≥ Bw(dw) ∀r ∈ Rw, w ∈ W∑

r

(αηwr + θw) fwr = [Bw(dw)] dw ∀w ∈ W

The objective solves the system problem, maximizing the social welfare or the
economic benefit. The first constraint ensures that the generated flow pattern is
a feasible network flow (see system 7.1). The second and the third constraints
ensure that the generated flow pattern is in Wardrop’s (or User) equilibrium (see
Eq.(7.67)).
Notice from the Equilibrium conditions in system (7.17) that the tolls are OD
dependent, meaning that routes belonging to the same OD-pair are charged the
same cost.
It turns out that if system problem SP (system (7.14)) and user problem UP
(system (7.1)) have solutions (v∗, d∗) and (v̄, d̄) respectively, and the functions
η(f) and B(d) are continuous and strictly monotonic in f and d respectively,
then, program (7.17) above has a unique solution (f̃ , d̃) with the objective value

Z̃ =
∑
w

∑
r

α (η̃wr ) f̃wr −
∑
w εW

d̃wˆ

0

Bw(ς)dς

in the interval∑
w

∑
r

α (ηw∗r ) fw∗r −
∑
w εW

dw∗ˆ

0

Bw(ς)dς ,
∑
w

∑
r

α (η̄wr ) f̄wr −
∑
w εW

d̄wˆ

0

Bw(ς)dς


We have again used η̃wr to mean ηwr

(
f̃wr
)
.

The argument is very easy to see since if in Eq.(7.67), there exists a toll pattern
such that θr = θp ∀r, p ∈ Rw, r 6= p, w ∈ W , then the feasible flow pattern is
the same as the system optimum flow pattern (SP), and the total system welfare
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is Z∗ (i.e Z̃ = Z∗) which is the best one can get. On the other hand, observe
that the solution vector (f̄ , d̄) of the user problem UP with objective value Z̄ is a
feasible solution to program (7.17) (i.e with θw = 0; ∀w ∈ W ), in this case Z̃ = Z̄
. Search for a better solution will force some OD tolls θw to be non zero, so in
general Z̃ ≤ Z̄. Therefore, Z̃ is bounded below by Z∗ and above by Z̄, or

Z∗ ≤ Z̃ ≤ Z̄

7.3.3 Deriving the OD toll for special cases

Optimal OD-based congestion pricing for a two-link network

In this subsection, we will derive an explicit formula for optimal OD tolls for a
two-link network. Note that the proposed OD-based tolling scheme is a ‘‘second-
best’’ scheme in road pricing terminology where ‘‘second-best’’ refers to the fact
that there are additional constraints on the link tolls (for example, in OD-tolling
where all routes belonging to the same OD are charged the same amount). Such
constraints limit access to the entire solution space, and this in general, leads to
sub-optimal solutions, hence the name ‘‘second-best’’. A “first-best” solution, on
the contrary, allows all links to be tolled with any value. The latter is rather
impractical. For this and other reasons, researchers have turned attention to a
model that tolls a subset of the network links, or in general, a model that has
constraints of tolls, and termed it ‘‘the second-best pricing scheme’’ [76, 66, 69,
78].
Given a two-link network with two routes (1 & 2) and one OD pairs, i.e., each
link is a route, under elastic demand, we assume that the system controller would
want to keep the social benefit as high as possible using OD-based tolls to regulate
the demand on the network. At equilibrium, the total cost on route 1 (average
cost on route 1 plus the toll on route 1) should be equal to the total cost on
route 2 (average cost on route 2 plus the toll on route 2); otherwise, people would
shift from one route to the other [72]. Further, at equilibrium, the total cost
experienced during the entire trip equals the benefit enjoyed for the entire trip;
otherwise more (in case the total cost is less than the benefit) or less (in case
the total cost is more than the benefit) people will travel. Summarizing, if we
assume that both links are actually used, our toll optimization problem can thus
be stated as follows (see system 7.17 with α = 1):

max
f,θ


(f1+f2)ˆ

0

B(ς)dς − η1f1 − η2f2


s.t

η1 + θ = B [ξ1] (7.18)
η2 + θ = B [ξ2]

where f1 and f2 are flows on routes 1 and 2 respectively, ηi = ηi (fi) is the flow
dependent route cost on route i, and θ is the OD-based toll, and B = B (f1 + f2).
Recall that ξ1and ξ2 are the KKT multipliers associated with the two constraints
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respectively. If we let L be the Lagrangian, then there exist (ξ1, ξ2) such that the
following KKT conditions hold for system (7.18):

L =
(f1+f2)ˆ

0

B(ς)dς − η1f1 − η2f2

+ (B − η1 − θ) ξ1 + (B − η2 − θ) ξ2

∂

∂f1
L = B − η′1f1 − η1 − η

′

1ξ1 +B
′
ξ1 +B

′
ξ2 = 0 (7.19)

∂

∂f2
L = B − η′2f2 − η2 − η

′

2ξ2 +B
′
ξ1 +B

′
ξ2 = 0 (7.20)

∂

∂θ
L = −ξ1 − ξ2 = 0 (7.21)

∂

∂ξi
L = B − ηi − θ = 0 ∀i (7.22)

where η′i = d
dfi
ηi (fi), and B

′ = ∂
∂fi
B
(∑

i
fi

)
.

Eq.(7.20) minus Eq.(7.19), using the fact that in equilibrium η1 = η2, together
with Eq.(7.21) yield

η
′

1f1 − η
′

2f2 + η
′

1ξ1 − η
′

2ξ2 = 0 (7.23)
η
′

1f1 − η
′

2f2 + η
′

1ξ1 + η
′

2ξ1 = 0 (7.24)

ξ1 = η
′
2f2 − η

′
1f1

η
′
1 + η

′
2

(7.25)

from Eq.(7.19), (7.21) , (7.22) and (7.25)
B = η

′

1f1 + η1 + η
′

1ξ1

θ = B − η1

= η
′

1f1 + η
′

1ξ1

= η
′

1f1 + η
′

1
η
′
2f2 − η

′
1f1

η
′
1 + η

′
2

θ =
η
′
2

(
η
′
1f1
)

+ η
′
1

(
η
′
2f2
)

η
′
1 + η

′
2

(7.26)

Eq.(7.26) reveals that the OD toll on each of the routes is the weighted mean of
the marginal external costs, where the weight of route i is the derivative of the
usage cost of route j.
Note that this demonstration generalises to two-route networks with one OD pair,
where a route may contain more than one link, and in that case, η′i = ∂

∂fi
ηi (f),

where fi is the flow on link i.
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Second-best OD-based congestion pricing for a three-link network

Given a three-link network with three routes and one OD pairs, i.e., each link
is a route, we again analyse the following optimization problem, the Lagrangian
and the KKT optimality conditions:

max
f,θ


(f1+f2+f3)ˆ

0

B(ς)dς − η1f1 − η2f2 − η3f3



s.t (7.27)

η1 + θ = B [ξ1]
η2 + θ = B [ξ2]
η3 + θ = B [ξ3]

where B = B (f1 + f2 + f3).

L =
(f1+f2+f3)ˆ

0

B(ς)dς − η1f1 − η2f2 − η3f3

+ (B − η1 − θ) ξ1 + (B − η2 − θ) ξ2 + (B − η3 − θ) ξ3

∂

∂f1
L = B − η′1f1 − η1 − η

′

1ξ1 +B
′
ξ1 +B

′
ξ2 +B

′
ξ3 = 0 (7.28)

∂

∂f2
L = B − η′2f2 − η2 − η

′

2ξ2 +B
′
ξ1 +B

′
ξ2 +B

′
ξ3 = 0 (7.29)

∂

∂f3
L = B − η′3f3 − η3 − η

′

3ξ3 +B
′
ξ1 +B

′
ξ2 +B

′
ξ3 = 0 (7.30)

∂

∂θ
L = −ξ1 − ξ2 − ξ3 = 0 (7.31)

∂

∂ξi
L = B − ηi − θ = 0 ∀i (7.32)

Eq.(7.29) minus Eq.(7.28), (7.30) minus (7.29), (7.30) minus (7.28), together with
the fact that in equilibrium η1 = η2 = η3 yield

η
′

1f1 − η
′

2f2 + η
′

1ξ1 − η
′

2ξ2 = 0 (7.33)
η
′

2f2 − η
′

3f3 + η
′

2ξ2 − η
′

3ξ3 = 0 (7.34)
η
′

1f1 − η
′

3f3 + η
′

1ξ1 − η
′

3ξ3 = 0 (7.35)
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from Eq.(7.33)

η
′

1ξ1 = η
′

2f2 − η
′

1f1 + η
′

2ξ2

ξ1 = η
′
2f2 − η

′
1f1 + η

′
2ξ2

η
′
1

. (7.36)

Then Eqs (7.34) and (7.31) imply

η
′

2f2 − η
′

3f3 + η
′

2ξ2 − η
′

3ξ3 = 0
η
′

2f2 − η
′

3f3 + η
′

2ξ2 + η
′

3 (ξ1 + ξ2) = 0
η
′

2f2 − η
′

3f3 + η
′

3ξ1 +
(
η
′

2 + η
′

3

)
ξ2 = 0

ξ1 =
η
′
3f3 − η

′
2f2 −

(
η
′
2 + η

′
3

)
ξ2

η
′
3

(7.37)

Comparing Eqs (7.36) and (7.37) we find that

η
′
3f3 − η

′
2f2 −

(
η
′
2 + η

′
3

)
ξ2

η
′
3

= η
′
2f2 − η

′
1f1 + η

′
2ξ2

η
′
1

ξ2 = η
′
1η
′
3f3 + η

′
3η
′
1f1 − η

′
1η
′
2f2 − η

′
3η
′
2f2(

η
′
1η
′
2 + η

′
1η
′
3 + η

′
2η
′
3

)
from Eq.(7.29)

B − η′2f2 − η2 − η
′

2ξ2 +B
′
ξ1 +B

′
ξ2 +B

′
ξ3 = 0

B − η′2f2 − η2 − η
′

2ξ2 +B
′ (ξ1 + ξ2 + ξ3) = 0

B − η′2f2 − η2 − η
′

2ξ2 = 0
B = η

′

2f2 + η2 + η
′

2ξ2.

Hence from (7.32)

θ = B − η2

= η
′

2f2 + η
′

2ξ2

= η
′

2f2 + η
′

2our
η
′
1η
′
3f3 + η

′
3η
′
1f1 − η

′
1η
′
2f2 − η

′
3η
′
2f2(

η
′
1η
′
2 + η

′
1η
′
3 + η

′
2η
′
3

)

θ =

(
η
′
2η
′
3

)
η
′
1f1 +

(
η
′
1η
′
3

)
η
′
2f2 +

(
η
′
1η
′
2

)
η
′
3f3(

η
′
1η
′
2 + η

′
1η
′
3 + η

′
2η
′
3

) (7.38)

Again, the OD toll on each of the routes is the weighted average of the marginal
external costs, where the weight of route i is the product of the derivative of the
usage cost of the other two routes. Note that this demonstration also generalises
to three-route networks with one OD pair, where a route may contain more than
one link, and in that case, η′i = ∂

∂fi
ηi (f), where fi is the flow on link i.
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Second-best OD-based congestion pricing for a general network

Using system (7.17), the optimization problem for the second-best OD-based
pricing scheme for a general network is stated as follows:

max
f,d,θ

 ∑
w εW

dwˆ

0

Bw(ς)dς −
∑
w

∑
r

α (ηwr (f)) fwr



s.t (7.39)

αηwr + θw ≥ Bw(dw) ∀r ∈ Rw, w ∈ W [ξwr ]∑
r

(αηwr + θw) fwr = [Bw(dw)] dw ∀w ∈ W [ζw]

fwr ≥ 0 [ρwr ]

where dw = ∑
r εRw

fwr is the total demand for the wth OD pair, and θw is the OD

toll for the wth OD pair. α is the value of time (VOT).
At equilibrium, we actually require that for a given OD pair w, the marginal
benefit equals the average cost plus tolls incurred on any single used path belong-
ing to w. Therefore, the first (inequality) constraint becomes equality, and the
second and third constraints follow immediately (and thus can be deleted). The
Lagrangian is thus given by

L =
∑
w εW

dwˆ

0

Bw(ς)dς − α
∑
w

∑
r

(ηwr ) fwr +
∑
w

∑
r

(Bw(dw)− αηwr − θw) ξwr

∂

∂fwr
L = Bw − α (ηwr )

′
fwr − αηwr +

∑
s εRw\r

(Bw)
′
ξws + (7.40)

(
(Bw)

′
− (αηwr )

′)
ξwr = 0 ∀r ∈ Rw, w ∈W

∂

∂θw
L = −

∑
r εRw

ξwr = 0 ∀w ∈W (7.41)

∂

∂ξwr
L = Bw − αηwr − θw = 0 ∀r ∈ Rw, w ∈W (7.42)

where (ηwr )
′
= ∂

∂fwr
ηwr (f), and (Bw)

′
= ∂

∂fwr
Bw (dw) with dw = ∑

r∈Rw
fwr .

From Eqs.(7.40) and (7.41)

Bw−α (ηwr )
′
fwr −αηwr +

∑
s εRw\r

(Bw)
′
ξws +(Bw)

′
ξwr −α (ηwr )

′
ξwr = 0 ∀r ∈ Rw, w ∈ W
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Bw − α (ηwr )
′
fwr − αηwr +

(Bw)
′ ∑
s εRw\r

ξws

−
(Bw)

′ ∑
s εRw\r

ξws

− α (ηwr )
′
ξwr = 0 ∀r ∈ Rw, w ∈W (7.43)

Bw − α (ηwr )
′
fwr − αηwr − α (ηwr )

′
ξwr = 0 ∀r ∈ Rw, w ∈W

Bw = α (ηwr )
′
fwr + αηwr + α (ηwr )

′
ξwr r ∈ Rw (7.44)

Using Eq.(7.44), and that at equilibrium ηwr = ηws for r, s ∈ Rw

∂

∂fws
L− ∂

∂fwr
L = (ηwr )

′
fwr − (ηws )

′
fws + (ηwr )

′
ξwr − (ηws )

′
ξws = 0 for any r, s ∈ Rw, w ∈W

(ηwr )
′
fwr − (ηws )

′
fws + (ηwr )

′
ξwr + (ηws )

′ ∑
j εRw\s

ξwj = 0

(ηwr )
′
fwr − (ηws )

′
fws + (ηwr )

′
ξwr + (ηws )

′
ξwr + (ηws )

′ ∑
j εRw\r,s

ξwj = 0

ξwr =
(ηws )

′
fws − (ηwr )

′
fwr − (ηws )

′ ∑
j εRw\r,s

ξwj

(ηwr )′ + (ηws )′ ∀r ∈ Rw, w ∈W ; s ∈ Rw (7.45)

θw = Bw − αηwr ∀w ∈W ; r ∈ Rw

= α (ηwr )
′
fwr + α (ηwr )

′
ξwr ∀w ∈W ; r ∈ Rw (from Eqn (43))

θw = α (ηwr )
′
fwr + α (ηwr )

′
(ηws )

′
fws − (ηwr )

′
fwr − (ηws )

′ ∑
j εRw\r,s

ξwj

(ηwr )′ + (ηws )′ ∀w ∈W ; r, s ∈ Rw

θw = α

(ηws )
′ (

(ηwr )
′
fwr

)
+ (ηwr )

′ (
(ηws )

′
fws

)
− (ηwr · ηws )

′ ∑
j εRw\r,s

ξwj

(ηwr )′ + (ηws )′ ∀w ∈W ; r, s ∈ Rw (7.46)

where ξwj is given by Eq.(7.45). To understand the full structure of the generalised
OD-toll in Eq.(7.46), one needs to explicitly determine all ξwj for all j. It is worth
knowing that for four-route network with one OD-pair, Eq.(7.46) reduces to a
result similar to the ones derived in the two-route and three-route networks: The
weighted average of the marginal external costs, where the weight of route i is
the product of the derivative of the usage cost of other routes. Further analysis
of Eq.(7.46) suggest the same trend as given below:

ξ
w
s =

(
ηwp

)′ ((
ηwp

)′
fwp

)
−
(
ηwr

)′ ((
ηws

)′
fws

)
−
(
ηwp

)′ ((
ηws

)′
fws

)
+
(
ηwp

)′ ((
ηwr

)′
fwr

)
−
(
ηwp · η

w
r

)′ ∑
j ε Rw\p,r,s

ξwj(
ηwp · ηwr

)′
+
(
ηwp · ηws

)′
+ (ηwr · ηws )′

∀w ∈ W ; p, r, s ∈ Rw (7.47)

θ
w = α

(
ηwp · η

w
s

)′ ((
ηwr

)′
fwr

)
+
(
ηwp · η

w
r

)′ ((
ηws

)′
fws

)
+
(
ηwr · η

w
s

)′ ((
ηwp

)′
fwp

)
−
(
ηwp · η

w
r · η

w
s

)′ ∑
j ε Rw\p,r,s

ξwj(
ηwp · ηws

)′
+
(
ηwp · ηwr

)′
+ (ηwr · ηws )′

∀w ∈ W ; p, r, s ∈ Rw (7.48)
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As a future research, we would like to see if there is an simpler way of explicitly
determining the multiplier ξwj for all j.

7.4 Numerical examples

In this section, we demonstrate our model so far using a simple two-route net-
work (see Figs. 7.1 and 7.2). In our model and derivations, we have focused
on travel time cost. Recall that the choice of travel time cost ηTf is an arbit-
rary choice. A decision maker may as well choose to optimize emission, noise,
safety etcetera. In this specific example, we optimize the entire travel cost using
the OD-based toll. We assume undifferentiated users (extension to multiple user
classes is straightforward).

7.4.1 Network 1

r

p

Figure 7.1: Two-route network 1

We define the following inverse demand (benefit) function for the single-OD net-
work

Bw (dw) = 20− dw

2

Results

Table 7.2: Result table for network 1

fr fp dw η(fr) η(fp) θr θp η(fr) + θr η(fp) + θp Bw(dw) Social Welfare

User Equilibrium 11.43 5.71 17.14 11.43 11.43 0.00 0.00 11.43 11.43 11.43 73.47

System Optimum 7.27 3.64 10.91 7.27 7.27 7.27 7.27 14.55 14.55 14.55 109.09

OD-based toll 7.27 3.64 10.91 7.27 7.27 7.27 7.27 14.55 14.55 14.55 109.09

Observe also that we could achieve the system optimal flow pattern with an OD-
based toll in this specific example. The tolls ensure that the system optimal flow
is in Wardrop’s equilibrium. In fact, the OD tolls coincide with the first-best
tolls, leading to the optimal system welfare. The UE flow pattern over-used the
network, leading to low benefit values for the users, as reflected in the low societal
benefit seen in the social welfare column of Table 7.2. Throughout, we assume
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that the generated toll revenue is invested back into the transportation network
so as not to increase the travel cost (see Table 7.1).
In general, the OD-based tolls coincide with those of the system optimum (SO)
if the following holds in particular:

θw(OD) = θwr (SO) = θwp (SO)
where

θw(OD) = η
′
2η
′
1f1 + η

′
1η
′
2f2

η
′
1 + η

′
2

θwr (SO) = η
′

1f1

θwp (SO) = η
′

2f2

θw(OD) is the OD-based tolls for the origin–destination w given in Eq.(7.26),
θwr (SO) and θwp (SO) are the marginal cost tolls on routes r and p respectively.
Note that tolls could also be defined in a different way. Indeed, any toll vectors
that satisfy only the first line of conditions given above, will induce the system
optimum.

7.4.2 Network 2

Now, we alter the travel cost on route r and solve system (7.17) again.

r
2

p

Figure 7.2: Two-route network 2

We use the same inverse demand (benefit) function for the single-OD network

Bw (dw) = 20− dw

2

Results

Table 7.3: Result table for network 2

fr fp dw η(fr) η(fp) θr θp η(fr) + θr η(fp) + θp Bw(dw) Social Welfare

User Equilibrium 3.80 7.24 11.04 14.48 14.48 0.00 0.00 14.48 14.48 14.48 30.49

System Optimum 2.36 4.18 6.54 5.58 8.36 11.15 8.36 16.73 16.73 16.73 72.02

OD-based toll 2.72 3.70 6.42 7.40 7.40 9.39 9.39 16.79 16.79 16.79 70.59
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In this second network example, though the social welfare due to the OD pricing
scheme slightly fell short (by less than 2%) of the social welfare of the system
optimum, it (the OD scheme) improved the no-toll user equilibrium scenario by
more than 130%. Notice again that the users overused the network by almost
100% in an uncontrolled network scenario (UE), leading to the low social welfare.
With these simple examples, we demonstrate that the proposed OD-based pricing
scheme has the potential of greatly improving a no-toll or uncontrolled network
scenario (see 7.3).

7.5 An OD-based pricing for a multi-period static traffic
assignment

7.5.1 Introduction

Having dealt with the OD-based pricing scheme for variable demand, we now
turn our attention to a fixed demand model where demands are read from OD
matrices built by observing traffic over time. With the input from the matrix,
usually, fixed demand pricing models fix the demand for each time interval as
read from the OD matrix, and search for optimal toll (and hence flow) pattern
for this time slot. The proposed OD-based tolling scheme will have no effect for
such model since the (OD-based) scheme does not optimize route split. To further
explain, modelling (one-period) fixed demand requires that all input demand be
realised for all ODs, and this requirement strips the OD-based tolling scheme of
its shift demand effect. All routes belonging to the same OD pair are charged the
same, so users belonging to the same OD pair will disregard the corresponding
OD tolls while optimizing their route choice.
In the model we propose, we look at a given modelling time horizon T divided into
multiple periods. We take input demand from the time-dependent OD matrix
for the discrete and connected time periods tis, we then allow that these input
demands are not fixed for the time intervals/periods, but ‘elastic’ within the
entire modelling horizon. To further illustrate, suppose that T is divided into
three periods, say t1, t2 and t3, and suppose that the input or the counted demand
d̂ is as follows: d̂ (t1) = 200, d̂ (t2) = 1000 and d̂ (t3) = 300, then using OD-based
tolls, we can shift demands within T in a more efficient way. In the optimized
scenario with the OD-based tolls, it may be that the optimized demand d̄ is now
given by d̄ (t1) = 450, d̄ (t2) = 650 and d̄ (t3) = 400. We allow for this flexibility
in demand because counted traffic (i.e. user behaviour or user equilibrium) may
be far from the system optimal traffic flow pattern as we will see later [12]. The
flexibility on demand over the modelling periods allows efficient distribution of
demand across the modelling periods or horizon. On the other hand, the total
amount of traffic over the entire modelling horizon T (as read from the input
matrix) must be realized [28].
In steps, the OD-based pricing for a multi-period static traffic assignment (MSTA)
involves: (1) Reading demand for all periods over the entire T from a time-
dependent OD-matrix, (2) Allow the total demand over T be fixed/realized,
and (3) Optimize the demand shifts within T using the OD-based tolls whilst
ensuring user equilibrium within and across the tis. In addition, the proposed
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model includes the fact that observed departure travel pattern is not necessarily
preferred departure pattern for the road users [61, 9]. To this end, we borrow
the schedule delay idea of [61, 9, 2] to account for the cost involved in shifting
departure time of a user from a given time slot to another.

7.5.2 Model formulation

Let G = {N, A} denote a transportation network consisting of a set of nodes N
and a set of links A. Let P be the set of all routes in G and p ∈ P the index for

Table 7.4: Notations

xa (ti) number of vehicles traversing link aduring time ti
xwap (ti) number of vehicles traversing link aon route p

between OD pair wduring departure time interval ti
ua (ti) inflow rate of link aduring departure time interval ti
uwap (ti) inflow rate of link aon route pbetween OD pair

wduring ti
va (ti) exit flow rate of link aduring departure time interval ti
vwap (ti) exit rate of link aon route pbetween wthOD pair during ti
Ew
p (ti) cummulative number of vehicles arriving destination s

from origin ron route pby time ti
ewp (ti) arrival flow rate at the destination for the wthOD pair

on route pduring ti
fw (ti) depature flow rate for the wthOD pair during time ti
fwp (ti) depature flow rate into route pfor the wthOD pair during ti
F set of all feasible path flows
Pw set of all paths belonging to the wthOD pair
N set of all nodes in the network
A(n) set of links whose tail node is n
B(n) set of links whose head node is n
τa (ti) travel time over link afor flows entering link aduring ti
ηwp (f (ti)) travel time experienced over route pby users belonging

to the wthOD pair departing during ti
d̂w (ti) demand for the wth(r-s) OD pair during time tias

observed from the input OD matrix. It is the number of
travellers departing origin rduring titowards destination s

d̄w (ti) optimized demand for the wth(r-s) OD pair at time ti.It is
the optimize number of travellers departing origin r
during titowards destination s

cwtjti cost involved in shifting departure time of a user from
tjto tifor wthOD pair

ywtjti number of users who were departing during tjbut are
rescheduled to depart during tifor the wthOD pair in the
optimized model

zwtjti number of users who prefer departing during tjbut are
are actually departing during tifor the wthOD pair
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routes in G. One or more routes p ∈ P may exist between origin (r)-destination
(s) pair rs = w ∈ W . We use W to denote the set of all origin–destination (OD)
pairs. Every route p is comprised of one or more links a ∈ A. We use a discrete
time formulation in which the whole studied time period T is divided into a
certain number of small time intervals, denoted by ti [28]. These discrete time
intervals ti with i = 1, 2, . . . , T are such that they correspond to the departure
times. For example, if the study time period T is the from 6:00h to 12:00h, then
the departure time intervals ti can be t1 = 6 : 00h – 6 : 15h, t2 = 6 : 15h – 6 : 30h,
t3 = 6 : 30h – 6 : 45h, and so on. Note that this length of the interval is arbitrarily
chosen. We will consider one user class model. Heterogeneous users’ model is
a straightforward extension. Throughout, we omit the constant value of time
(VOT) α. First, we derive models for the route-based pricing, and then the
OD-based pricing scheme. The notations and the feasibility conditions given are
derived from [11] (see Table 7.4).

Flow conservation constraints

fwp
(
ti
)

=
∑
aεA(r)

uwap
(
ti
)

∀i, w, p ∈ Pw, [α] (7.49)

ew
(
ti
)

=
∑
aεB(s)

∑
p

vwap
(
ti
)

∀i, w (7.50)

∑
aεA(n)

uwap
(
ti
)

=
∑

aεB(n)
vwap

(
ti
)

∀i, w, p ∈ Pw, n [γ] (7.51)

∑
p

fwp
(
ti
)

= dw
(
ti
)

∀i, w [δ] (7.52)
∑
j

ywtjti = dw
(
ti
)

∀i, w [δ] (7.53)
∑
i

ywtjti = d̂w
(
tj
)

∀j, w [ζ] (7.54)
∑
i

dw
(
ti
)

=
∑
i

d̂w
(
ti
)

∀w [ς] (7.55)

dw(ti) is the optimizable demand (used in the system optimization problem) for
the wth OD pair during the ith departure time interval. d̂w (tj) is the observed
demand pattern (as read from the input time-dependent OD matrix) for the
wth OD pair during the jth departure time interval. Note that since our model
(for now) focuses on optimal route toll vector θ (ti) that induce optimal route
flow vector f (ti) during the departure time ti, Eq.(7.50) can be omitted, since
Eq.(7.52) takes care of arrival flows. When optimizing the entire system flow,
constraints (7.52) to (7.55) ensure the flexibility of the demand within the periods,
and realisation of the total demand in the modelling period T. The Greek letters
in the square brackets are the Karush–Kuhn–Tucker (KKT) multipliers associated
with the constraints.
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Definitional constraints
For all i, the following conditions hold:∑

w,p

uwap
(
ti
)

= ua
(
ti
)
,

∑
w,p

vwap
(
ti
)

= va
(
ti
)

∀a (7.56)

uwbp
(
ti
)

= vwap
(
ti
)

∀a ∈ A(r), A(s), b ∈ B(r), B(s) (7.57)∑
p

xwap
(
ti
)

= xwa
(
ti
)
,

∑
w,p

xwap
(
ti
)

=
∑
w

xwa
(
ti
)

= xa
(
ti
)
∀w, a (7.58)

∑
p

Ew
p

(
ti
)

= Ew
(
ti
)

∀w (7.59)

In condition (7.57), we have created artificial inflow links into the origin node r.
This is common in traffic modelling, where artificial links are created from the
centroids (commonly referred to as zones) to the physical origin and destination
nodes (see Figure 7.3). Observe that equation (7.51) is well satisfied at both
origin and destination nodes r and s.

Centroid r s Centroid

vrp1

vrp2

urp1

urp2 vsp1
usp2

usp1

vsp2

l

l

Physical origin node Physical destination nodePhysical origin node

Artificial links Artificial linksWhere P1 = path 1

P2 = path 2

Figure 7.3: Diagrammatic explanation of Eq.(7.57)

Non negativity conditions
uwap

(
ti
)
≥ 0 [λ] , vwap

(
ti
)
≥ 0 [ξ] , xwap

(
ti
)
≥ 0 ∀i, w, p ∈ Pw, a (7.60)

Ew
p

(
ti
)
≥ 0 ∀i, w, p ∈ Pw (7.61)

ywtitj ≥ 0 [%] ∀i, j, w (7.62)
Boundary conditions

Ew
p

(
t0
)

= 0 ∀w, p ∈ Pw (7.63)

xwap
(
t0
)

= 0 ∀w, p ∈ Pw, a (7.64)
Relationships between state and control variables

d

dti
xwap

(
ti
)

= uwap
(
ti
)
− vwap

(
ti
)

∀a, w, p ∈ Pw, i (7.65)
d

dti
Ew
p

(
ti
)

= ewp
(
ti
)

∀w, p ∈ Pw, i (7.66)

Flow propagation condition
Flow propagates as in fixed demand models.

The Greek letters in the square brackets are the Karush–Kuhn–Tucker (KKT)
multipliers associated with the constraints.
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User problem (UP)

The user problem (usually) formulated at the lower level of the bi-level road
pricing problem is the multi-period version of the static Wardrop’s equilibrium.
We define this multi-period user equilibrium (MPUE) to be the state of the
traffic in which no user decreases his or her generalised travel cost by unilaterally
changing routes or departure time. As demonstrated in Appendix A, it was shown
that this equilibrium condition can be found by solving an equivalent variational
inequality (VI) problem (see also [19, 50, 11]). Adding the transfer cost cwtjti
(which users incur by departing at ti instead of tj), we reformulate the VI for the
dynamic user equilibrium (DUE) in [19, 18] as follows:
Given that F is the set of all feasible path flows, then

Find f̃wp
(
ti
)
∈ F such that

∑
w

∑
i

∑
pεPw

(
η̃wp
(
ti
)) (

fwp
(
ti
)
− f̃wp

(
ti
))

+
∑
j

[cwtjti · zwtjti ]

 ≥ 0 ∀fwp
(
ti
)
∈ F

(7.67)

The variational inequality above can be written as a minimization problem

Find f̃ = f̃wp (ti) such that f̃ solves

min
f,z

∑
w

∑
i

( ∑
pεPw

[
η̃wp (ti) fwp (ti)

]
+∑

j
[cwtjti · zwtjti ]

)
s.t

fwp (ti) ∈ F

where ηwp (f (ti)) short-written as ηwp (ti) is the flow-dependent travel time on route
p ∈ Pw, f̃wp (ti) is the route flow on route p ∈ Pw.

Again, for a given OD pair w ∈ W , cwtjti is the cost involved in shifting departure
time of a user from tj to ti [9]. zwtjti is the number of users who prefer to depart
during departure time interval tj but are actually departing during ti. The tilde
‘∼’ indicates a fixed parameter. Note also that the transfer cost cwtjti is known.

We therefore formulate the UP as follows:

min
f,z

∑
w

∑
i

( ∑
pεPw

[
η̃wp (ti) fwp (ti)

]
+∑

j
[cwtjti · zwtjti ]

)
s.t



7.5 An OD-based pricing model for an MSTA 125

fwp
(
ti
)

=
∑
aεA(r)

uwap
(
ti
)

∀i, w, p ∈ Pw, [α] (7.68)

ew
(
ti
)

=
∑
aεB(s)

∑
pεPw

vwap
(
ti
)

∀i, w

∑
aεA(l)

uwap
(
ti
)

=
∑
aεB(l)

vwap
(
ti
)

∀i, w, p ∈ Pw, l [γ]

∑
pεPw

fwp
(
ti
)

= d̂w
(
ti
)

∀i, w [δ]
∑
j

zwtjti = d̂w
(
ti
)

∀i, w [δ]

whereδw (tj) is a free variable corresponding to the minimum travel cost on route
p ∈ Pw for users departing during tj, and d̂w (tj) is the observed demand of users
departing an origin r toward a destination s during time slot tj. Further, cwtjti is
the transfer cost from tj to ti, where we take that the diagonal of the matrix cWTT
has zero entries, i.e. cwtiti = 0 for all departure times i and all origin–destination
pair w. Observe from system (7.68) that the route travel cost η̃wp (ti) is fixed in
accord with the VI in Eq.(7.67). This is actually the main difference between the
objective formulation of the user problem (7.68) and that of the system problem
(7.70).
With the conditions in system (7.68), the relational and definitional conditions
are satisfied. The boundary conditions are hard coded. The Greek letters in the
square brackets are the Karush–Kuhn–Tucker (KKT) multipliers associated with
the constraints.
We derived in Appendix A that any flow pattern f̃wp (tj) , 1, · · · , T satisfying the
following conditions is a multi-period user equilibrium (MPUE) flow pattern:

η̃wp
(
ti
)

+ cwtjti ≥ δw
(
tj
)

∀w ∈ W, j∑
pεPw

(
η̃wp
(
ti
))
f̃wp

(
ti
)

= δw
(
ti
)
d̂w
(
ti
)

∀w ∈ W (7.69)

for a given departure time slot ti,

System problem (SP)

We assume that the controller’s objective is to minimize the system’s total travel
cost: travel time cost and the cost of shifting users from one departure time
interval to another. This objective is thus stated as follows:

min
f,y

∑
i

(∑
w

∑
pεPw

[
fwp

(
ti
)
ηwp

(
ti
)]

+ ∑
j

∑
w

[cwtjti · ywtjti]
)

s.t (7.70)
flow feasibility constraints (Eqs. 7.49-7.55)
nonnegativity constraints (Eqs. 7.60-7.62)
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With the conditions in Eq.(7.70), the relational and definitional conditions are
satisfied. The boundary conditions are hard coded.
fwp (ti) is the departure flow rate along route p for the wthOD pair during depar-
ture time interval ti.
For a given OD pair w ∈ W , cwtjti is the cost involved in shifting a user’s departure
time from tj to ti [9]. The cost-matrix cWTT is determined using the technique of
reversed engineering approach based on a discrete choice model, of type logit, with
a utility function adopted from [61] as described in [9]. This technique involves
the use of Small’s formulation of the time of travel choice problem, to determine
the preferred time of departure tH by the users given the observed departure time
pattern tJ [61]. Knowing the preferred departure time tH , one can then determine
the cost involved in shifting demand from tJ to tI , an interested reader is referred
to [61, 9]. The diagonal of the matrix cWTT has zero entries, that is cwtiti = 0 for all
departure times i and all origin–destination pair w.
ηwp (ti) is travel time experienced over route p by users belonging to the wth OD
pair during ti. Again, we have used ηwp (ti) to mean ηwp (f (ti)). Observe that the
cost ηwp (f (ti)) on route p ∈ Pw depends on a whole vector of path flows f(ti),
and this means that ηwp (f (ti)) may depend on the flows on other routes q ∈ Pw
with q 6= p as well as on p ∈ Pm with m 6= w. Due to Assumption 2, the route
cost ηwp (f (ti)) is a continuously differentiable function of the route flow fwp (ti).
For the OD pair w ∈ W , ywtjti is the number of users who in the observed travel
pattern d̂ were departing during departure time interval tj, and will be departing
in the interval ti in the optimized pattern d.
In Eq.(7.70), the first part of the objective minimizes the system travel time cost,
and the second part minimizes the system cost involved in shifting the departure
times of users from tj to ti, also called the transfer cost. Note that the choice
of travel time cost fwp (ti) ηwp (ti) is an arbitrary choice. The system controller
instead can minimize the cost of emission, noise, etcetera or any combination of
the cost as deemed fit.
Suppose

(
f̄ , d̄, ȳ

)
solves system (7.70), we derived in Appendix A that for any

departure time interval ti, any route toll θwp (ti), with p ∈ Pw, satisfying the
following linear conditions will also induce the optimal feasible route flow pattern
f̄wp (tj) as a multi-period user equilibrium (MPUE) flow pattern:

(
η̄wp
(
ti
)

+ cwtjti + θwp
(
ti
))
≥ ζw

(
tj
)

∀p ∈ Pw, w ∈ W, j∑
pεPw

(
η̄wp
(
ti
)

+ θwp
(
ti
))
f̄wp

(
ti
)

= ζw
(
ti
)
d̄w
(
ti
)

∀w ∈ W (7.71)

where ζw (tj) is a free variable corresponding to the minimum travel cost on route
p ∈ Pw for users departing during tj, and d̄w (tj) is the optimal demand of users
departing an origin r toward a destination s during tj. We have also used η̄wp (ti)
to mean ηwp

(
f̄ (ti)

)
. Note that the optimized demand d̄w (tj) need not to be the

same as the observed demand d̂w (tj) for every j, but ∑j d̄
w (tj) = ∑

j d̂w (tj) as
explained in subsection 7.5.1.
For an OD-based pricing, we will let the route tolls θwp (ti) in (7.71) be identical
for all p ∈ Pw. With the first-best solution

(
f̄ , d̄, ȳ

)
from system (7.70), one
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first solves the linear system in Eq.(7.71) to see if an OD-based pricing scheme
exists which can induce

(
f̄ , d̄, ȳ

)
as an MPUE. If such a scheme exists, then the

OD-based scheme yields the system optimal (first-best) solution as in subsection
7.4.1, otherwise, using

(
f̄ , d̄, ȳ

)
as an initial solution point, one has to solve the

following problem:

min
f,y,θ

∑
i

(∑
w

∑
p

[
fwp

(
ti
)
ηwp

(
ti
)]

+ ∑
j

∑
w

[cwtjti · ywtjti]
)

s.t

f low feasibility&nonnegativity constraints (7.72)(
ηwp

(
ti
)

+ cwtjti + θw
(
ti
))
≥ ζw

(
tj
)

∀p ∈ Pw, w, i, j∑
pεPw

(
ηwp

(
ti
)

+ θw
(
ti
))
fwp

(
ti
)

= ζw
(
ti
)
dw

(
ti
)

∀w, i

The second and the third conditions ensure that the resulting feasible flow is
in multi-period user equilibrium (MPUE). θw (ti) is the modelling OD-based toll
vector that enables the optimisation of the path flows fwp (ti)and the demand
shifts dw (ti), and further ensures the multi-period user equilibrium state of the
optimised flow pattern f : a state in which no user thinks he or she can decrease his
or her generalised travel cost by unilaterally changing routes or departure time
(see Appendix A for more explanations). All other variables in system (7.72)
remain as previously described.

7.5.3 The second-best OD-based pricing for a multi-period static traffic
assignment

Here we define the second-best scheme to mean a tolling scheme where tolls are
not allowed on paths connecting a given OD pair w ∈ W . This requirement may
just be for a given time interval. Therefore, for a given origin–destination pair w,
all paths p ∈ Pw may be required to be toll free during the interval ti, and may
take a positive toll during tj, where i 6= j. If we denote by ω(ti) the set of all toll
free OD pairs during departure interval ti, then it is required that

θw
(
ti
)

= 0∀w ∈ ω(ti) (7.73)

If condition (7.73) is required, then one only need to add this extra condition
(Eq.(7.73)) to system (7.72).

7.6 Numerical example for the MSTA
We will demonstrate the OD-based pricing model for the multi-period static traffic
assignment (MSTA) using the Nguyen and Dupuis network (see Figure 7.4). The
network has 13 nodes, 19 links, 25 paths and 4 origin–destination pairs. In this
example, we have chosen to minimize the system travel time cost fTη and the
transfer cost cTy. We suppose that the time window T is divided into three
discrete departure time intervals ti with i = 1, 2, 3. We further suppose undif-
ferentiated users. The figure and the table below give the example network, and
the link attributes respectively.
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7.6.1 The Nguyen and Dupuis network example

Figure 7.4: The Nguyen and Dupuis network with node and link numbers

Table 7.5: Link attributes

Link Identity Link FreeFlowTravelTime
Number Capacity (mins)

1 700 7
2 560 9
3 560 12
4 375 5
5 420 12
6 420 9
7 700 5
8 280 4
9 700 9
10 700 4
11 280 9
12 280 5
13 280 9
14 700 4
15 280 9
16 560 8
17 140 7
18 560 18
19 560 11

OD p Route
1 1 5 6 7 8 2
2 1 5 6 7 11 2
3 1 5 6 10 11 2

I 4 1 5 9 10 11 2
1–>2 5 1 12 8 2

6 1 12 6 7 8 2
7 1 12 6 7 11 2
8 1 12 6 10 11 2
9 1 5 6 7 11 3
10 1 5 6 10 11 3

II 11 1 5 9 10 11 3
1–>3 12 1 5 9 13 3

13 1 12 6 7 11 3
14 1 12 6 10 11 3
15 4 5 6 7 8 2

III 16 4 5 6 7 11 2
4–>2 17 4 5 6 10 11 2

18 4 5 9 10 11 2
19 4 9 10 11 2
20 4 5 6 7 11 3
21 4 5 6 10 11 3

IV 22 4 5 9 10 11 3
4–>3 23 4 5 9 13 3

24 4 9 10 11 3
25 4 9 13 3
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Table 7.6: Transfer cost per OD

Transfer cost CI
TT Transfer cost CII

TT

t1 t2 t3

t1 0.00 3.07 0.22
t2 3.07 0.00 2.84
t3 0.22 2.84 0.00

t1 t2 t3

t1 0.00 0.71 0.01
t2 0.71 0.00 0.72
t3 0.01 0.72 0.00

Transfer cost CIII
TT Transfer cost CIV

TT

t1 t2 t3

t1 0.00 6.19 0.11
t2 6.19 0.00 6.08
t3 0.11 6.08 0.00

t1 t2 t3

t1 0.00 2.66 0.05
t2 2.66 0.00 2.71
t3 0.05 2.71 0.00

Table 7.7: Observed demand (Input OD demand matrix)

Time slot OD Demand
t1 I 200

II 400
III 200
IV 150

t2 I 500
II 700
III 550
IV 250

t3 I 350
II 300
III 200
IV 100

Table 7.5 gives the link characteristics of the eight links. Table 7.6 gives the
transfer costs ctjti involved in shifting departure time of a user from tj to ti [9].
Table 7.7 gives the observed daily traffic pattern for the example network and for
the three multiple periods t1, t2 and t3.

We use the so called Bureau for Public Roads (BPR) function αT ffa
(

1 + ϕ
(
va(ti)
Ĉa

)φ)
to define the link travel time cost where
T ffa – free flow travel time on link a,
va(ti) – total flow on link a during ti.
Ĉa – practical capacity of link a, and
ϕandφ – BPR scaling parameters, with ϕ = 0.15, φ = 4.
α is the value of time (VOT) with the value 0.1671667 / minute [4]. In reality, it
could be that some travellers have no choice than to strictly depart during a given
departure time ti. Therefore, we assume for each OD, that the following number
of travellers is bound to depart during the corresponding departure intervals:



130 Chapter 7. An OD-based road pricing model for static and MSTA

Table 7.8: Fixed demand

OD/departure time t1 t2 t3

I 200 300 250
II 150 500 230
III 200 350 150
IV 50 80 150

Other users are flexible with respect to departure times, but a cost is incurred in
shifting them from one departure time interval to another.

7.6.2 Results
Tolls and costs are in Euro (€).

Table 7.9: User equilibrium: observed traffic scenario for the three discrete time
intervals

Table 7.9a: Observed table

t1

OD [w] Paths [p] Path flows [fp] Path tolls [θp] Path Cost [ηp] System Cost [fpηp]
I 1 0 0.00 7.08 0.00

2 1 0.00 6.13 5.71
3 0 0.00 6.21 0.00
4 0 0.00 6.21 0.00
5 197 0.00 6.13 1,205.05
6 0 0.00 7.08 0.00
7 2 0.00 6.13 14.28
8 0 0.00 6.21 0.00

Demand 200 Total cost 1,225.04
II 9 0 0.00 6.09 0.00

10 76 0.00 6.03 455.30
11 86 0.00 6.03 515.60
12 63 0.00 6.03 382.09
13 5 0.00 6.03 27.23
14 171 0.00 6.03 1,031.96

Demand 400 Total cost 2,412.19
III 15 0 0.00 7.91 0.00

16 0 0.00 7.08 0.00
17 0 0.00 7.04 0.00
18 0 0.00 7.05 0.00
19 200 0.00 4.46 892.99

Demand 200 Total cost 892.99
IV 20 0 0.00 6.92 0.00

21 0 0.00 6.88 0.00
22 0 0.00 6.89 0.00
23 0 0.00 6.87 0.00
24 89 0.00 4.28 379.89
25 61 0.00 4.28 262.35

Demand 150 Total cost 642.23
Total 5,172.45



7.6 Numerical example for the MSTA 131

Table 7.9b: Observed table

t2

OD [w] Paths [p] Path flows [fp] Path tolls [θp] Path Cost [ηp] System Cost [fpηp]
I 1 0 0.00 9.89 0.00

2 0 0.00 9.89 0.00
3 0 0.00 9.89 0.00
4 0 0.00 10.46 0.00
5 500 0.00 9.19 4,596.51
6 0 0.00 9.89 0.00
7 0 0.00 9.89 0.00
8 0 0.00 9.90 0.00

Demand 500 Total cost 4,596.51
II 9 212 0.00 6.74 1,426.08

10 199 0.00 6.74 1,337.89
11 0 0.00 7.31 0.00
12 111 0.00 6.74 746.99
13 134 0.00 6.74 901.95
14 45 0.00 6.74 305.79

Demand 700 Total cost 4,718.71
III 15 6 0.00 10.66 60.08

16 34 0.00 10.66 359.78
17 3 0.00 10.66 26.73
18 0 0.00 11.24 0.00
19 508 0.00 10.66 5,415.40

Demand 550 Total cost 5,861.99
IV 20 0 0.00 7.52 0.00

21 0 0.00 7.53 0.00
22 0 0.00 8.09 0.00
23 0 0.00 7.52 0.00
24 0 0.00 7.51 0.00
25 250 0.00 6.94 1,735.73

Demand 250 Total cost 1,735.73
Total 16,912.94
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Table 7.9c: Observed table

t3

OD [w] Paths [p] Path flows [fp] Path tolls [θp] Path Cost [ηp] System Cost [fpηp]
I 1 0 0.00 7.25 0.00

2 0 0.00 6.39 0.00
3 19 0.00 6.35 120.98
4 12 0.00 6.35 73.46
5 279 0.00 6.35 1,771.28
6 0 0.00 7.23 0.00
7 6 0.00 6.35 35.71
8 35 0.00 6.35 221.05

Demand 350 Total cost 2,222.48
II 9 7 0.00 6.03 43.78

10 76 0.00 6.03 455.70
11 86 0.00 6.03 518.80
12 0 0.00 6.04 0.00
13 0 0.00 6.05 0.00
14 131 0.00 6.03 790.22

Demand 300 Total cost 1,808.50
III 15 0 0.00 8.08 0.00

16 0 0.00 7.22 0.00
17 0 0.00 7.20 0.00
18 0 0.00 7.20 0.00
19 200 0.00 4.58 915.04

Demand 200 Total cost 915.04
IV 20 0 0.00 6.90 0.00

21 0 0.00 6.87 0.00
22 0 0.00 6.88 0.00
23 0 0.00 6.85 0.00
24 79 0.00 4.23 335.61
25 21 0.00 4.23 87.40

Demand 100 Total cost 423.01
Total 5,369.03

As a reference point, we solve the uncontrolled user problem. This describes the
traffic situation without tolling, and the results are given as an observed traffic
scenario in Table 7.9.
Given that all ODs can be tolled, we now solve the system problem (system
(7.72)) for the optimal OD tolls θw (ti) and the corresponding path flows fwp (ti).
The OD tolls θw (ti) as given in Table 7.10 ensure that the demand is efficiently
distributed through the modelling period given the transfer costs. The OD tolls
further ensure multi-period user equilibrium in the network.
Observe from Tables 7.9 and 7.10 that the traffic flow patterns obey the multi-
period Wardrop’s equilibrium, where for every OD and a given departure time
interval ti, the costs on all used paths are the same, and smaller than the costs on
the unused paths, with no user having any incentive to switch paths or departure
time.
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For this simple network, the OD-based toll improved the no-toll scenario by about
10% (see table 7.11). Though we are not optimizing over the tolls, it is interesting
to see that (despite the fact that it is just a mere coincidence) the OD-dependent
tolls required to achieve the desired path flows are very small for all departure
time intervals. It is important to recall that the (OD) toll patterns as given
in Table 7.10 are in general not unique. In fact, there exist infinite (OD) toll
patterns that can achieve this same (path) flow pattern (see the appendix).

Table 7.10: OD-based toll: optimised traffic scenario for the three discrete time
intervals

Table 7.10a: Optimised table

t1

OD [w] Paths [p] Path flows [fp] Path tolls [θp] Path Cost [ηp] System Cost [fpηp]
I 1 0 1.33 8.43 0.00

2 0 1.33 7.88 0.00
3 0 1.33 7.84 0.00
4 0 1.33 7.84 0.00
5 200 1.33 7.47 1,227.08
6 0 1.33 8.42 0.00
7 0 1.33 7.87 0.00
8 0 1.33 7.83 0.00

Demand 200 Total cost 1,227.08
II 9 77 1.85 7.90 468.51

10 102 1.85 7.90 618.86
11 24 1.85 7.90 147.56
12 79 1.85 7.90 480.49
13 31 1.85 7.90 185.55
14 147 1.85 7.90 892.01

Demand 461 Total cost 2,792.98
III 15 0 0.35 8.27 0.00

16 0 0.35 7.72 0.00
17 0 0.35 7.68 0.00
18 0 0.35 7.68 0.00
19 311 0.35 5.25 1,528.08

Demand 311 Total cost 1,528.08
IV 20 0 0.86 7.79 0.32

21 0 0.86 7.75 0.00
22 0 0.86 7.74 0.05
23 0 0.86 7.75 0.06
24 40 0.86 5.32 177.31
25 93 0.86 5.32 413.59

Demand 133 Total cost 591.32
Total 6,139.46
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Table 7.10b: Optimised table

t2

OD [w] Paths [p] Path flows [fp] Path tolls [θp] Path Cost [ηp] System Cost [fpηp]
I 1 0 0.83 8.87 0.00

2 0 0.83 8.15 0.00
3 0 0.83 8.14 0.00
4 0 0.83 8.20 0.00
5 396 0.83 8.11 2,884.01
6 0 0.83 8.88 0.00
7 0 0.83 8.15 0.00
8 0 0.83 8.14 0.00

Demand 396 Total cost 2,884.01
II 9 127 1.09 7.31 788.52

10 184 1.09 7.31 1,143.26
11 0 1.09 7.38 0.00
12 107 1.09 7.31 665.96
13 94 1.09 7.31 584.15
14 76 1.09 7.31 472.28

Demand 587 Total cost 3,654.18
III 15 0 0.19 9.04 0.00

16 0 0.19 8.32 0.00
17 0 0.19 8.30 0.00
18 0 0.19 8.37 0.00
19 408 0.19 6.33 2,508.52

Demand 408 Total cost 2,508.52
IV 20 0 0.44 7.49 0.00

21 0 0.44 7.48 0.00
22 0 0.44 7.55 0.00
23 0 0.44 7.48 0.00
24 0 0.44 5.51 0.00
25 155 0.44 5.44 776.02

Demand 155 Total cost 776.02
Total 9,822.74
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Table 7.10c: Optimised table

t3

OD [w] Paths [p] Path flows [fp] Path tolls [θp] Path Cost [ηp] System Cost [fpηp]
I 1 0 0.98 8.50 0.24

2 48 0.98 7.67 322.55
3 35 0.98 7.67 232.80
4 1 0.98 7.67 5.38
5 337 0.98 7.67 2,259.12
6 0 0.98 8.49 1.24
7 18 0.98 7.67 118.59
8 14 0.98 7.67 95.62

Demand 453 Total cost 3,035.54
II 9 35 1.84 7.90 211.22

10 82 1.84 7.90 499.17
11 52 1.84 7.90 314.74
12 47 1.84 7.90 281.87
13 17 1.84 7.90 105.41
14 119 1.84 7.90 718.14

Demand 352 Total cost 2,130.54
III 15 0 0.05 8.40 0.00

16 0 0.05 7.61 0.00
17 0 0.05 7.58 0.00
18 0 0.05 7.58 0.00
19 231 0.05 5.14 1,174.63

Demand 231 Total cost 1,174.63
IV 20 0 0.92 7.84 0.11

21 0 0.92 7.80 0.04
22 0 0.92 7.80 0.01
23 0 0.92 7.80 0.03
24 94 0.92 5.37 418.90
25 118 0.92 5.37 526.27

Demand 212 Total cost 945.37
Total 7,286.08
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Table 7.10d: Transfers and associated costs

Transfers (yITT ) Total transfer cost (∑j y
I
jiC

I
ji) to:

t1 t2 t3

t1 200 0 0
t2 0 396 104
t3 0 0 350

t1 0.00
t2 0.00
t3 294.42

Transfers (yIITT ) Total transfer cost (∑j y
II
ji C

II
ji ) to:

t1 t2 t3

t1 400 0 0
t2 61 587 52
t3 0 0 300

t1 43.39
t2 0.00
t3 37.40

Transfers (yIIITT ) Total transfer cost (∑j y
III
ji C

III
ji ) to:

t1 t2 t3

t1 200 0 0
t2 111 408 31
t3 0 0 200

t1 690.24
t2 0.00
t3 185.72

Transfers (yIVTT ) Total transfer cost (∑j y
IV
ji C

IV
ji ) to:

t1 t2 t3

t1 133 0 17
t2 0 155 95
t3 0 0 100

t1 0.00
t2 0.00
t3 258.31

Table 7.11: Summary table

Observed Optimized
Total demand
ODI 1,050 1,050
ODII 1,400 1,400
ODIII 950 950
ODIV 500 500
System costs
Total travel time cost (€) 27,454.42 23,248.28
Total transfer cost (€) 0.00 1,509.48
Total system cost (€) 27,454.42 24,757.76
Cost reduction due to OD toll (€) 2,696.66
Percentage cost reduction (%) 9.82

7.7 Conclusions

Due to some practical issues arising from the link-based (or route-based) pricing
schemes, origin–destination based (OD-based) road pricing presents a potential
tool to alleviate these issues. In this Chapter, we study this new pricing scheme,
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and the contributions of the Chapter to the literature are: (1) the analytical
derivation of OD-based tolls for elastic demand under the static traffic assignment
model, (2) the derivation of equilibrium conditions for a multi-period static traffic
assignment (MSTA), and (3) the formulation of an OD-based pricing scheme for
the MSTA. The OD tolls for elastic demand regulate the overall demand effect,
which is the extent to which road users efficiently leave or enter the road system
due to congestion pricing. Further, the OD-based pricing scheme for a multi-
period static traffic assignment regulates the overall shift demand effect, which
is the extent to which road users efficiently choose a given departure time due
to congestion pricing, and the costs associated with shifting departure times.
Numerical examples show that the OD-based tolling scheme has potentials of
greatly improving the network and reduce the total travel cost. We acknowledge
that the proposed scheme has a downside of not being able to optimize the route
split as in the first-best link-based pricing scheme. Our next line of research will
be to explicitly derive the OD-based tolls for the MSTA in a closed form.
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Appendix A

Multi-period static traffic assignment (MSTA)

Derivation of Eqs.(7.69) and (7.71).

System problem (SP)

Given the feasibility conditions in Section 5.2.1 and SP formulation in system
(7.70), we derive the following:
If we let L be the Lagrangian, and

(
f̄wp (ti) , ȳwtjti

)
(with the corresponding path

cost η̄wp (ti)) be the solution to program (7.70), then, for a given ti, there exists
(α, γ, δ, ζ, ς, λ, ξ, %) such that the following KKT conditions hold:

L =
∑
i

∑
w

∑
pεPw

[
fwp
(
ti
)
ηwp
(
ti
)]

+
∑
i

∑
j

∑
w

[cwtjti · ywtjti ] +

 ∑
aεA(r)

uwap
(
ti
)
− fwp

(
ti
)α

+

 ∑
aεB(n)

vwap
(
ti
)
−
∑
aεA(n)

uwap
(
ti
) γ +

(
dw
(
ti
)
−
∑
p

fwp
(
ti
))

δ

+

∑
j

ytjti − dw
(
ti
) δ +

(
d̂w
(
tj
)
−
∑
i

ytjti

)
ζ +

(∑
i

d̂w
(
ti
)
−
∑
i

dw
(
ti
))

ς

−uwap
(
ti
)
λ− vwap

(
ti
)
ξ − ywtjti%

∂

∂fwp (ti)L =
(
η̄wp
(
ti
)

+ f̄wp
(
ti
) d

dfwp (ti)
(
η̄wp
(
ti
)))
− αwp

(
ti
)
− δw

(
ti
)

= 0 ∀w, p ∈ Pw (7.74)
∂

∂uwap (ti)L = αwp
(
ti
)
− γwp

(
ti
)
− λwap

(
ti
)

= 0 ∀w, p ∈ Pw, a ∈ p (7.75)

∂

∂vwap (ti)L = γwp
(
ti
)
− ξwap

(
ti
)

= 0 ∀w, p ∈ Pw, a ∈ p (7.76)

∂

∂ (dw (ti))L = δw
(
ti
)
− δw

(
ti
)
− ςw

(
ti
)

= 0 ∀w (7.77)

∂

∂ywtjti
L = cwtjti + δw

(
ti
)
− ζw

(
tj
)
− %wtjti = 0 ∀j, w (7.78)

uwap
(
ti
)
λwap

(
ti
)

= vwap
(
ti
)
ξwap
(
ti
)

= 0 ∀w, p ∈ Pw, a ∈ p (7.79)
ywtjti%

w
tjti = 0 ∀j, w (7.80)

λwap
(
ti
)
, ξwap

(
ti
)
≥ 0 ∀w, p ∈ Pw, a ∈ p; %wtjti ≥ 0 ∀j, w (7.81)

Eqs.(7.79) and (7.80) are complementarity conditions. We have used a ∈ p to
mean that link a belongs to set of links forming path p.
From Eq.(7.74)(

η̄wp
(
ti
)

+ f̄wp
(
ti
) d

dfwp (ti)
(
η̄wp
(
ti
)))

= αwp
(
ti
)

+ δw
(
ti
)

= γwp
(
ti
)

+ λwap
(
ti
)

+ δw
(
ti
)

(due to Eq. 7.75)
= ξwp

(
ti
)

+ λwap
(
ti
)
− cwtjti + ζw

(
tj
)

+%wtjti (due to Eqs. 7.76 and 7.78)(
η̄wp
(
ti
)

+ f̄wp
(
ti
) d

dfwp (ti)
(
η̄wp
(
ti
)))

+ cwtjti ≥ ζw
(
tj
)

(due to Eq. 7.81)
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Thus, we have
(
η̄wp
(
ti
)

+ f̄wp
(
ti
) d

dfwp (ti)
(
η̄wp
(
ti
))

+ cwtjti

)
≥ ζw

(
tj
)

∀w, j (7.82)

for any ti.
Again, from Eq.(7.74)(

η̄wp
(
ti
)

+ f̄wp
(
ti
) d

dfwp (ti)
(
η̄wp
(
ti
)))

= αwp
(
ti
)

+ δw
(
ti
)

= γwp
(
ti
)

+ λwap
(
ti
)

+ δw
(
ti
)

(due to 7.75)

= ξwap
(
ti
)

+ λwap
(
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(due to Eq. 7.52)

but from Eq.(7.53), ∑
i
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and if we let i = j, then we have in Eq.(7.83) that
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for any tj. We have also used the fact that cwtjtj = 0 ∀j.
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Therefore, we summarize as follows: for any given ti, the following condition
holds for the system problem:
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(7.85)

User problem (UP)

Given that
(
f̃wp (ti) , z̃wtjti

)
solves the user problem (7.68), then for a given ti,

analysing the KKT optimality conditions as we did in the system problem yields
the following results:
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∀p ∈ Pw, w ∈ W, j (7.86)

If for route p, the inflow during time ti into p is positive, that is, f̃wp (ti) > 0,
then from Eq.(7.57), it means that uwbp (ti) = vwap (ti) > 0 ∀a ∈ A(r), b ∈ B(r).
Consequently, the complementarity conditions in Eq.(7.79) force the variables
ξwap (ti) and λwap (ti) in Eq.(7.86) to be zero. Thus, we have the following:
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+ cwtjti = δw
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∀f̃wp
(
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> 0, p ∈ Pw, w ∈ W, j (7.87)

for any ti.
Recall that cwtiti = 0 ∀i, w, therefore for j = i, Eq.(7.87) reduces to

η̃wp
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= δw
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)

∀f̃wp
(
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)
> 0, p ∈ Pw, w ∈ W, i (7.88)

The LHS of (7.87) is the total equilibrated cost of traversing OD pair w ∈ W
using route p ∈ Pw, for users departing origin r towards destination s during time
ti. Observe that the RHS is a variable that does not depend on p.
Recall that η̃wp (ti) is the travel cost on route p ∈ Pw.
Interpretation: At equilibrium, the travel costs on all used routes for a given
OD pair w ∈ W are the same and equal to δw (ti) for all users departing during
time ti.
For any ti, the following holds in general due to Eq.(7.81):

η̃wp
(
ti
)

+ cwtjti ≥ δw
(
tj
)

∀w ∈ W, j (7.89)

Interpretation: At equilibrium, no user has an incentive to switch routes or
departure time. To see this, (1) that no user has an incentive to switch departure
time: recall from Eq.(7.88) that η̃wp (ti) is the (minimum or the actual) travel
time cost of all users departing during ti, and cwtjti is the transfer cost of a user
who would like to switch his departure time from tj to ti, and from Eq.(7.88)
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again, we know that δw (tj) is the minimum travel cost for users departing during
tj, but then, condition (7.89) states that the transfer cost from tj to ti, plus the
minimum travel cost already experienced by users departing during ti, is at least
the minimum/actual travel cost for users departing during tj. So at equilibrium,
no user departing during tj will have any incentive to switch departure time (to
ti).
(2) That no user has an incentive to switch routes: now take j = i in Eq.(7.89),
we then have the following:

η̃wp
(
ti
)
≥ δw

(
ti
)

∀w ∈ W, i (7.90)

again η̃wp (ti) is the actual travel time cost experienced on route p for users de-
parting during ti. This means that at equilibrium, δw (ti) must be the least travel
cost between the OD pair w ∈ W of users departing the origin during time ti.
Recall that from (7.88) δw (ti) is the travel cost of all used paths. We thus state
the following: at equilibrium, the journey cost on all used paths/routes for a given
OD pair are the same and equal to δw (ti), but also less than those which would be
experienced by a single vehicle on any of the unused paths (Wardrop’s first prin-
ciple). This means that at equilibrium, no user has any incentive of switching
routes.
With the above interpretation, we therefore, conclude that any path flow f̃WPW

(
tT
)

vector which solves system (7.68), is a multi-period user equilibrium (MPUE)
flow. The proof follows from the KKT analysis and argument given above.
Furthermore, following the same lines of argument that led to Eq.(7.85) for the
system problem, we arrive at the following result for the user problem:∑
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for any ti. Eq.(7.91) is the network cost balance equation. Hence we summarize
as follows: for any given ti, the following condition holds for the user problem:
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The first-best multi-period route-based pricing scheme
Here we use the term first-best to mean a network scenario where all routes are
allowed to be tolled at all times. In such a setting, the system optimum is usually
guaranteed given the nature the problem.
Now compare SP conditions (7.85) with UP conditions (7.92) and observe that
the difference between them is the quantity(
f̄wp (ti) d

dfwp (ti)

(
η̄wp (ti)

))
seen in the analysis of the SP. Therefore, by adding the

term (
fwp

(
ti
) d

dfwp (ti)
(
ηwp
(
ti
)))∣∣∣∣∣

fwp (ti)=f̄wp (ti)
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to the path travel cost η̃wp (ti) ∀p ∈ Pw, w ∈ W , the first-order optimality condi-
tions of the user problem will exactly be the same as those of the system problem.
This means that any flow pattern that solves the system problem will also solve
the user problem

(
i.e. f̄wp (ti) = f̃wp (ti) ∀p ∈ Pw, w ∈ W

)
.

If we denote by θwp (ti) the optimal toll to be paid on route p ∈ Pw when departing
origin r during time ti towards destination s, then the first-best optimal route
toll can be given by

θ̄wp
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=
(
fwp

(
ti
) d

dfwp (ti)
(
ηwp
(
ti
)))∣∣∣∣∣

fwp (ti)=f̄wp (ti)
(7.93)

where f̄wp (ti) is the solution of the SP.
Interpretation: The toll θ̄wp (ti) is the additional travel cost imposed on all
the existing users of route p ∈ Pw by an additional user on route p ∈ Pw , all
departing from the same origin at the same departure interval ti, and heading
towards the same destination. Further observe from Eq.(7.82) that this quantity
in (7.93) depends travel time cost and transfer cost of other departure times tjs.
This means that θ̄wp (ti) is not only the additional travel cost imposed on all the
existing users of route p ∈ Pw by an additional user on route p ∈ Pw departing
at ti, but also additional travel cost imposed all users who depart at different
departure time slot tj, j 6= i. Note that, if this additional user does not depart
during ti, maybe another user who departs during tj, j 6= i, may prefer to depart
during ti.
Therefore, by adding the toll θ̄wp (ti) to the cost of travel on route p ∈ Pw for users
departing during ti, we now ensure that all users, before embarking on a trip, take
into account the cost they incur and impose on other travellers by departing at
the chosen time ti. It turns out that θ̄wp (ti) as given in Eq.(7.93) is not the only
possible toll that can achieve the system optimal flow f̄wp (ti), in fact, there is an
infinite number of toll vectors that can achieve this optimal flow, thus we state
the following:
Corollary 2 Suppose f̄wp (ti) solves system (7.70), then for all departure times ti,
any route toll θwp (ti), p ∈ Pw satisfying the following linear conditions will also
induce the optimal route flow pattern f̄wp (ti) as a multi-period user equilibrium
(MPUE) flow pattern:
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∀w ∈ W (7.94)

where δw (tj) is a free variable, and d̄w (ti) is the optimal demand of users depart-
ing origin r toward destination s during time ti.
Proof: The proof simply follows from the KKT conditions of the SP and UP,
and the argument given earlier in this Appendix. �
Note that with Eq.(7.94), one can easily define secondary objectives on the path
tolls, for example, fixing the total toll collected, minimizing the maximum route
toll over all routes, etcetera.
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For the OD-based pricing scheme, one only needs to replace the route-based tolls
θwp (ti) in Eq.(7.94) with the OD-based tolls θw (ti).



144 Chapter 7. An OD-based road pricing model for static and MSTA



Chapter 8

Policy implications and discussions
People have realised that in the coming years, if something is not done, jammed
traffic, pollution, noise, safety issues and other traffic externalities will only grow
worse, with dire consequences. Due to financial, geographical, and political lim-
itations, and the fact that even the expansion of the existing infrastructure may
not lead to efficient use of transportation networks, it is envisaged that road
pricing seems a viable option for achieving a more efficient use of the existing in-
frastructure. With all its potentials, road pricing has not gained all the supports
it needed though. This lack of support is mainly due to how the pricing scheme
is developed and perceived.
Our main motivation for the research carried out in this thesis stems from the
fact that road pricing has long been modelled as a Stackelberg game, where
the government or the toll operator decides on the pricing scheme leaving the
road users and stakeholders affected by the scheme with little or nothing to do.
Further, many road pricing schemes consider only single or two objectives without
realising the effects of that on other traffic externalities. Moreover, many schemes
have neglected the reactions and positions of some groups, actors or stakeholders
if you want, and even the effect on businesses (private companies), during the
development and implementation of the road pricing schemes. “Businesses”, for
example, “often do not have knowledge about how the policy might affect them,
given the lack of reliable data. However, businesses represent a powerful interest
group that opposes road pricing.” In addition, environmental groups which had
not historically made transportation a central focus of their effort is now joining
the campaign (in approval or disapproval) of road pricing. As we have seen,
public (and/or stakeholders) acceptance is widely recognised as a major barrier
to widespread adoption of road pricing in most cities. Studies showed that road
pricing proposals need to be perceived as benefiting drivers individually and not
simply society at large.
In this thesis, we take into account that various stakeholders with different interest
may be involved during the toll decision making or “debate”. We also consider
the interest of the road users since their involvement may change how motor-
ists view the effect of pricing on them personally. This strategy enables us to
build support for the road pricing scheme among elected officials, key stakehold-
ers, and the general public. Taking the objectives of these various stakeholders
and most important traffic externalities into our models, we hope that the road
pricing schemes developed in this thesis will lead to a scheme that is fair and
acceptable by the society. In fact, our study shows that a road pricing scheme
that considers only one or part of the whole set of the traffic externalities, may
do so at the detriment of other externalities. In particular, a road scheme that
focusses in mitigating congestion, may lead to frequent road accidents and high
traffic emissions. This in turn will lead to rejection of such proposal by, say, the
environmental groups or activists.
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Take away #1
The underlying models for a good road pricing scheme should take into account
the (usually) conflicting interests of various stakeholders and the road users, and
all traffic externalities. Further, the effect of the pricing scheme on businesses
has to be well understood.

The fact that various stakeholders have different (and often contradicting) ob-
jectives, makes the problem a multi-objective problem (MOP), and the fact that
we are dealing with more than one stakeholder, makes it a multi-actor problem.
MOPs have been studied in traffic networks, and the most plausible or intuitive
is to generate a set of the so called Pareto points to the MOP and present them
to the policy or decision makers to choose a comprise (or desired) point. This
is synonymous to the weighted sum method of solving MOPs, and it is always a
question of what weights to choose for which objective. In the problem studied in
this thesis, the stakeholders have different (and usually conflicting) interests. Our
study shows that the stakeholders choice of (Pareto) points may be very much
different from one another. This implies that a choice of a single “Pareto” point
may not be accepted by some stakeholders.
This thesis took a different and novel direction to deal with the multi-stakeholder
problem. We mimic a practical and political arena, where various stakeholders,
each with his own objective, debate on the effect of the road pricing on the ex-
ternalities in questions, on different user classes, on the environment, and society,
on nearby traffic and networks, and so on. It is always during such discussion
that the proposed pricing scheme is adopted, amended or dropped. We model the
problem as a game allowing all the influential actors to participate in the game.
As legislative powers vary from one country/government to another, it depends
of course whether the implementation of road pricing needs legislative approval
or not.

Take away #2
The traditional way of solving multi-objective problems, namely, choosing a point
from a set of Pareto points is not suitable for developing a just and acceptable
road pricing scheme.

Since a point in the Pareto set may not be accepted by all the stakeholders, the
first set of questions is: (1) can we find a feasible toll point (not necessarily a
Pareto point) that is acceptable by all the stakeholders, after all, only one toll
pattern (or a solution point) has to be implemented, and (2) if such point exists,
where is it in the toll solution space.
As stated before, the idea used in this study to answer these questions is to look
at these stakeholders as players, where turn by turn, each player proposes a toll he
thinks is optimal for his particular objective giving other stakeholders proposed
tolls. The essence of this game is to look for a situation where after some play
turns, the stakeholders can no longer improve their objectives by changing their
current toll strategy. At this point (a Nash equilibrium point), the resulting
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cumulative toll pattern is a stable pattern (or an ideal point) since no actor can
improve his objective by unilaterally changing his toll strategy. In other words,
a toll pattern is stable if all the stakeholders are contented with it. Our study
showed that such an ideal point does not exist in general. On the other hand,
if suitable restrictions (such as conditions on the number of toll roads, on user
classes, on the time of the day, on the level of tolls, etcetera) are placed on the
tolling game, such an ideal point may exist. Note that this point may not be a
Pareto point, meaning that the actions of uncoordinated players may lead to a
sub-optimal (or worse) traffic situation. The actors as used here can as well play
the role of autonomous cities and communities.
The implication of this is that in general (or in practice), we do not expect
the “rational” stakeholders or autonomous cities to arrive at or agree on a toll
pattern without some sort of cooperation or coalition in designing the scheme.
If we assume that stakeholders suggest tolls in turns during a tolling scheme
debate, it simply means that there will be an “endless” toll debate among them.
Synonymously, cities connected by road networks and autonomous in their road
pricing schemes will “endlessly” change their toll patterns in order to optimize
their individual objectives.

Take away #3
• Toll debate among stakeholders may result in a rat race or a tolling pattern

that is acceptable by all the stakeholders, but then, may worsen the existing
traffic situation.

• Further, decentralized tolling schemes by cities may result in a rat race,
or a scheme that may worsen the traffic situations in these cities, thereby
defeating the aim of road pricing.

Since the stakeholders or the actors do not agree on a tolling scheme in general,
and even if there is a tolling pattern accepted by all the stakeholders, this ideal
pattern may then be far from the system (Pareto) optimal solutions. We de-
veloped a novel mechanism that will induce a toll pattern that is system optimal
and stable among the stakeholders. The mechanism we developed ensures that
a given toll pattern is system optimal, and at the same time stakeholder optimal
for all stakeholders. This makes this toll pattern a stable one and acceptable by
all the actors involved. You may recall that these stakeholders may have conflict-
ing objectives, and how can a single toll pattern be optimal for all stakeholders?
The answer lies on the fact that the mechanism aligns the objectives of all the
stakeholders to that of the system or Grand leader’s objective using a taxing
mechanism just as in a Stackelberg game, where the leader aligns the followers’
actions to his objective using, for example, tolls as in the case of road pricing. The
fact that we are dealing with stakeholders at different levels, makes the problem
a multi-level problem.
This implies that a “central government” for example, can influence and check the
actions of non-cooperative actors, aligning their objectives (without asking them
to cooperate) to achieve a certain and acceptable aim. The Grand leader or the
“central government” can either tax or give subsidies to the stakeholders in order
to achieve his (and a common) aim for the stakeholders using the mechanism.
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The U.S. Department of Transportation’s Urban Partnership Program sets aside
about $1 billion from a dozen highway and transit programs for applicants that
satisfied criteria related to the “four ‘T’s” of Tolling, Transit, Telecommuting,
and Technology. This subsidy is of course to lure cities and states into a federal
government program.

Take away #4
• It is possible to centralize a decentralized tolling scheme using a mechanism

design, achieving a scheme that is stable, acceptable and “optimal”.
• The use of subsidies to steer stakeholders’ actions could lead to a corrupt

system, where one or some of the stakeholders would lobby the Grand leader
or the “central government” to use the taxing mechanism in their favour.

Link-based and route-based tolling schemes have their shortcomings. People have
always questioned and criticized some of the underlying operating principles of
these schemes. For example

• what happens when a temporal road disturbance such as accidents, road
constructions and repairs occur, and people may have to change their usual
travel pattern or route? This often leads to extra travel cost for the users.

• what happens when a road segment leading to residential street is a tolled
road, and residents always have to pay each time to go out or come in?

• can we find a tolling scheme that avoids the huge investment costs of road
pricing road infrastructures?

• can we find a scheme that encourages intra-mode transfer, and would in-
crease the mode share of public transport?

In search for an answer, we developed a novel road pricing scheme that charges
a road user based on his origin and destination. The origin destination-based
scheme optimally regulates traffic in and out of a transportation infrastructure
according to the time of the day enabling a peak-hour spread. The proposed
scheme has one downside though; it does not (in general) optimize the route split
among users.

Take away #5
An OD-based road pricing scheme presents a promising and acceptable model for
the new generation road pricing schemes.

How to use the fund generated from road pricing programs has always been a point
of debate, and this may be a point of disagreement among the stakeholders, and
consequently may lead to dropping of the pricing scheme. It has always been said
that the revenue generated will be invested back into the transportation system so
as not to increase the social cost for the drivers. It is argued that such investment
will benefit the drivers, but then, study shows that drivers are unlikely to feel
that the value of congestion reduction is worth the fee. Their view is by no means
irrational since pricing usually “make(s) travellers worse-off before the usage of
revenues is accounted for.” Moreover, investing the revenue on road developments
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still needs to demonstrate why a select group of drivers should pay while others
do not.
Further, stakeholders have questioned whether the revenues generated will be
distributed effectively so as to justify equity among the regions, the users and the
pricing zones. It is mostly for this reason that fuel or gasoline taxes presents a
sound argument as a “fair” means to generate funds for road maintenance. On
the other hand, a distance-based pricing scheme will ensure that the more one
uses the road, the more he pays, and such a scheme may be seen to be a fair and
equitable system of generating revenue for road maintenances. It should be noted
that when road pricing is in place, some of the broad-based taxes such as sales
taxes, has to be stopped since sales taxes, for example, are clearly less equitable.
Sales taxes in particular penalizes non-users. Creating public awareness of the
benefit of a road pricing scheme is one way to increase public acceptance of
the scheme. Note that the “efficiency and equity of any proposed road charge
depend on the travel market for which the charge is proposed. Moreover, what is
acceptable in Europe may not be in North America or vice versa.” Further, road
pricing schemes should map out from the onset how to charge foreign vehicles.

Take away #6
• A good proposal for a road pricing scheme should contain a fair or equitable

use of the revenue generated. The scheme itself should also be viewed as
fair or equitable by stakeholders.

• “In order to achieve process equity, transparency in the decision-making
process, in addition to allowing input from all potentially affected individuals
or groups representing them, is required.”
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Chapter 9

Conclusions and recommendations

We will now revisit the research questions of Chapter 1 and see how far we have
done justice to those questions.

Research questions revisited

We will give pointwise answers to the research questions.
1. Under static traffic assignment (STA), the thesis addresses the following

questions:
• What happens when stakeholders do not cooperate in toll setting?

– If the stakeholders do not cooperate, it is likely that they do not
come to a compromise toll pattern in general. On the other hand,
if they do come to a compromise toll pattern, this toll pattern
may lead to a network situation that is far from the optimal flow
(Chapter 4).

• Under which conditions can the existence of a Nash equilibrium (NE)
be guaranteed?
– We could not establish concrete and sufficient conditions to ensure

the existence of NE mainly because the players’ objectives are in
general not convex in the toll strategies. This condition is enough
to “ruin” the existence of NE. However, under suitable conditions
and restrictions the tolls, NE may exist (Chapter 4).

• Can we design a mechanism that induces a Nash equilibrium between
the actors?
– Yes, we designed a taxing mechanism that induces a NE among

the actors. We created the so called Grand leader (GL) that over-
sees the affairs of the actors. Using taxes, the GL could induce the
NE among the actors in the same way the actors induce Ward-
rop’s equilibrium among the road users with the aid of road tolls
(Chapter 5).

• When and how can a cooperative solution concept in the form of a
common road pricing scheme be found?
– We can expect a cooperative solution under the inducing mechan-

ism described in Chapter 5. That is, when the GL, with the aid
of the taxes, indirectly persuade actors to a cooperative (Chapter
5).

• If the stakeholders agree to cooperate, how would they share the be-
nefits?
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– The answer to this question lies solely on the stakeholders, and
most importantly, the objectives of these stakeholders. We found
that a stakeholder is likely to accept an offer (say, from a coalition),
only when the offer is better than what he can obtain standing
alone in the road pricing game (Chapter 4).

• Can we design a mechanism that induces a cooperative outcome on
otherwise non-cooperative actors, and thus achieve the system op-
timum or any other prescribed state within the system?
– Yes, in Chapter 5, we designed a mechanism that induces a NE

among the actors. The mechanism also ensures that the NE point
is a system optimal point, or some other point desired by the
Grand leader (Chapter 5).

• Which coalitions among the stakeholders are likely to be formed in a
cooperative concept?
– A coalition is likely to be formed if such coalition will prove to

be a stable coalition. A coalition is stable if there is a “wealth”
allocation scheme among the players of this coalition such that
they are all better off staying in this particular coalition than in
any other coalition (Chapter 4).

• What can we say about the various classical solution concepts from
cooperative game theory, such as core, nucleolus and bargaining sets?
– Core and bargaining sets of the road pricing game are discussed

in Chapter 4. The game may have a core under the conditions
described in Chapter 4 of this thesis (Chapter 4).

2. Equity issues:
Can we design a tolling scheme such that:

• People do not pay “unnecessarily high” tolls because of where they live
or work?
– Yes, and OD-based toll has the potentials of take care of the prob-

lem (Chapter 7).
• Flat tolls or user-specific tolls: which is more acceptable and to whom?

– Was not investigated in this thesis, recommended for future re-
search (Next section)

• OD-based tolls or link-based tolls: which is better from both the sys-
tem’s and users’ perspectives?
– OD-based tolling scheme has some obvious benefits over the link-

based counterpart, but the research on how it will be accepted by
the stakeholders and the road users is still lacking, thus a recom-
mendation for future research (Next section)

• Finally, can we find a tolling scheme that leaves every player (including
the road users) contented?
– Indeed, the tolling scheme under the optimal Nash inducing mech-

anism can create a “satisfying” outcome. Further, allocation rules
leading to stable coalitions may also lead to contented solutions
(Chapter 4 & 5).
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3. Implementation and practical application of our model
• How does the model apply to a realistic network.

– The models developed in this thesis were all tested on a small-size
example networks. The models on OD-based road pricing was
tested on the well-known Nguyen and Dupuis network. The ap-
plication on a real life network is recommended for future research
(Next section).

4. Model extension
• In which other domains might our models be applicable?

– The model developed in this thesis, especially the models of Chapter
5 have wide applications. For example, the optimal inducing mech-
anism can also be used to induce a system optimal performance
in the following scenarios:

∗ Malicious nodes in car to car communication where cars ex-
change data/information within a limited time frame (Schwartz
et al. [58, 56, 55, 57]).

∗ Local authorities tolling separate regions of the network.
∗ Energy producers in the energy market liberalization problem.
∗ Agents in the principal-agent model.
∗ Internet providers in the providers-subscribers Internet price
setting problem.

∗ Competition of firms over the same market shares.
∗ Employees that have flexibility on the number of workdays.

5. What are the policy implications of the study?
• What can the government, stakeholders, and road users learn from it?

– The policy implications of the study are given in Chapter 8 of this
thesis (Chapter 8)

• How feasible are the models?
– The models developed in this thesis look feasible and promising

Further, the models/study have the potentials of alleviating some
issues that have hindered the adoption and approval of road pri-
cing schemes in most cities.

Future research directions

With the road pricing models ready, the next line of research will be to implement
it in a real life test case to see the impact of the models developed in this thesis.
Testing such models will be easy in cities where road pricing schemes are up and
running.
In Chapter 7, we analyse the OD-based pricing scheme under multi-period traffic
assignment model. It will be nice if the models of this thesis are tested in a fully
dynamic environment though.
Further, the models developed in this thesis revolve around classical optimization,
heuristic counterparts may be needed for huge network applications.
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In Chapter 8, we noted the policy implications of the study carried in this thesis,
but then, it will be good if research is carried out to investigate the reactions of
the government, the stakeholders and the users on the type of pricing mechanisms
described in this thesis.
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Summary

Over the past years, vehicle ownership has increased tremendously leading to
increase in traffic externalities such as congestion, emission, noise, safety, etcetera.
By 2050, it is expected that more than 9 billion people will be living on Earth,
up from 7 billion today. Asia’s fast growing cities will absorb much of this growth
with three out of four people living in urban centres. Billions of people will live
above poverty lines, and will be able to afford luxuries. Development will reach to
many places on Earth, demand for a better life will rise, car/vehicle ownership will
increase leading to high demand for road capacities and infrastructures, yet supply
for these road capacities and infrastructures is not going to increase in the same
rate as their demand. Further, this increase in vehicle ownership will escalate the
traffic externalities. In fact, due to geographical, financial and political reasons,
most of the infrastructures will remain unchanged even when the demand is out
pacing supply for these infrastructures. On the other hand, shift to cleaner energy
resources may reduce emissions, but still will not remove cars out of the roads,
and therefore, still leaves a great part of the externalities in place.
The above mentioned reasons led economists to start thinking of how to mitigate
these externalities without depending on the physical expansion of infrastruc-
tures. One of the first ideas was to levy parking charges to deter cars from
entering into some (usually urban) zones. With the increase in development, and
quest for better life, car ownership increased, and, in fact, the benefits of owning
a car outweigh the parking charges, and the subsidies received by employees from
their employers for transportation fares cushion the effect of parking charges.
These reasons make it impossible to tackle congestion problems with parking
charges. Furthermore, parking fees do not depend upon the traffic volume or dis-
tance travelled, neither do they depend on the environmental characteristics of
the vehicle. Traffic in transit through a congested area is not affected by parking
fees at all. These show that parking fees are not so effective in battling traffic
externalities.
Failure of parking charges to mitigate congestion gave birth to what we today
know as road pricing. Road pricing is a scheme that defines charges on seg-
ments of a given transportation network in order to efficiently route users into
and throughout the network. The scheme determines which of the segments to
charge, how much to charge, and finally, when to charge. Road pricing schemes
have many success stories since the inception. They have helped cities recover
from frustrating traffic situations, generate funds for financing transport infra-
structures, and even mitigate some externalities that were not part of the initial
motives.
These days, due to high car ownerships, many traffic externalities (such as noise,
safety, emission, etcetera) earlier ignored when developing road pricing models,
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now have serious economic and health concerns. It is therefore, vital to include
these externalities in making a good road pricing scheme. Successful implement-
ation of any road pricing scheme depends mostly on two factors, namely, political
and user acceptability of the proposed scheme. We have seen in practice that
parliamentary debate on which of the road pricing schemes to implement and
which of the externality the scheme mitigates had often led to a “still birth” of
road pricing implementation. In addition, road users mostly see road pricing as
an extra tax burden, and have most times protested against it. The debate in
the parliament arises since stakeholders in the house have different and usually
conflicting interests about road pricing aims, otherwise there will be no debate.
In particular, a stakeholder may favour a scheme that mitigates congestion, while
the other favours a scheme that keeps the environment clean and green, and so
on. A toll pattern that mitigates one traffic externality may escalate the other,
so such debate is frustrating and often lead to a “no deal” end. To make mat-
ters worse, a toll pattern that efficiently distributes traffic in one “sovereign”
state/region may worsen the traffic situation in another (nearby) state/region.
Therefore, for a road pricing scheme to be acceptable, it has to carry along all
the stakeholders and the states involved. This means that we need pricing pat-
terns and/or schemes that deal with conflicting interests of the stakeholders, the
regions and the users, and leave every participating actor contented.
In search for such pricing schemes, game theoretic approach presents promising
models. In this thesis, we have developed road pricing models and mechanisms
to solve problems arising due to the conflicting interest of actors in developing
road pricing schemes. We first investigate why stakeholders usually do not come
to a compromising tolling pattern, and the answer lies in the fact that the debate
(among the policy makers) on what toll pattern to adopt has in general no Nash
equilibrium (NE). In particular, given a toll pattern and hence a traffic situation,
we can always find a stakeholder (or region) who will be better off choosing a
different toll pattern from the set of unbounded tolls. Although boundedness of
tolls may enforce NE, we found that it still can create a cyclic game among the
stakeholders leading to a no-Nash equilibrium game. This means that actions of
uncoordinated stakeholders or regions may create insatiable or non-optimal tolling
schemes, leading to instability of such schemes. We developed a model that takes
as input the network of interest, the objectives of the stakeholders and the road
users, and the conditions of operations, and then presents to the stakeholders a
stable tolling scheme/pattern that leaves each of them contented. The models
developed in Chapter 3 only define stable state tolls for the stakeholders, but do
not guarantee the existence of Nash equilibrium.
Since under normal conditions we cannot guarantee NE among the actors, and
meanwhile NE if exists may not be Pareto optimal, we designed a mechanism
that induces NE among these actors. Interestingly, the NE inducing mechanism
further ensures that the induced NE toll pattern is “optimal” for all stakeholders
and at the same time Pareto optimal for the global network. We call this mechan-
ism optimal Nash inducing mechanism. So when the issue of road pricing arises,
the mechanism designs a tolling scheme for the given network, and presents to
stakeholders a tolling pattern that is a Nash equilibrium. In this way, stakehold-
ers (or regions) cannot improve on the tolling pattern and thus do not have any
sense of unfairness, and this, sometimes, may lead to some degree of satisfaction.
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Above all, the inducing mechanism is Pareto or (if you like) system optimal.
This means that with this new model and mechanism, we have circumvented the
frustrating debates to arriving at (equilibrium or) a compromise tolling pattern,
which we know of course may not exist. The fact that the induced NE toll pattern
is “optimal” for each of the stakeholders and Pareto optimal for the global system
makes the scheme more likely to be accepted by the stakeholders and regions. We
have also included users’ interests such as low road tolls, no tolls for some roads,
and equity issues (like different values of time for different income classes) and so
on, to ensure user acceptability of the mechanism.
The optimal Nash inducing mechanism can be mimicked in dealing with many
real life problems, for example; inducing optimal performance in the following
set-up:
1. In telecommunication networks where cars equipped with sensors exchange
(say) traffic and environmental information within a limited time frame. 2. Local
authorities tolling separate regions of the network. 3. Energy producers in the
energy market liberalization problem. 4. Agents in the principal-agent model.
5. Internet providers in the providers-subscribers Internet price setting problem.
6. Competition of firms over the same market shares. 7. Employees that have
flexibility on the number of workdays.
See Chapter 5 for a detailed explanation of how we can mimic the optimal Nash
inducing mechanism in these instances.
It is interesting to know that the game theoretic model presented in this thesis
has given birth to a new way of solving multi-objective problems (MOPs). As
we mentioned in Chapter 6 of this thesis, it is always desirable to list all possible
solutions of an MOP to enable decision makers to choose suitable points (usually
on the Pareto front). Most existing algorithms that perform that task of listing
all solution points depend on the principle of Pareto dominance. This principle
is the basis of most genetic algorithms, which have been robust and powerful
in solving MOPs. When the number of objectives increases, these algorithms
find it complex to handle the Pareto dominance, and hence begin to deteriorate.
In fact, as soon as the objectives exceed four in number, the algorithms start
degenerating. Given an MOP, we represent each of the objectives as a player and
employ the game theoretic approach described in this thesis. Though the Nash
game model does not ensure the generation of all non-dominated solutions, the
competition among the actors (where each actor searches for the best solution
given what other actors are doing) tends to draw the solution points near to
the Pareto front. In our test case, we found that all solutions generated during
the game either lie on the Pareto front or in the neighbourhood of the Pareto
front, asserting the consistency with the game approach. This implies that good
solutions are generated at an early stage during the game which is rarely the
case in genetic algorithms. Further, the game mechanism we describe does not
deteriorate with the number of objectives, and has nothing to do with Pareto
dominance. We thus conclude that the game theoretical approach presents a
promising method for quick generation of (non-dominated) solutions for multi-
objective problems. The next line of research is to incorporate the nice features
of genetic algorithms to that of the game approach which we believe will give
birth to a powerful tool for MOPs.
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Sometimes temporal road disturbances such as accidents, road constructions and
repairs occur, and people may have to change their usual travel pattern or route.
This often leads to extra travel cost for the users. This may lead to complications
for a system that has road pricing schemes. A link-based pricing scheme means
that users may now need to pay more for travelling on a link they did avoid
initially. Similarly, a route-based or kilometre-based pricing also put more charges
on the users since they now may need to travel more kilometres to complete
their trips. On its own, a link-based tolling scheme may leave a user with no
option, for example, where he has to pay for driving into his street because a road
that connects him to his street has a price tag on it, and he has no alternative
road, or even pays more for using an alternative road. Studies show that these
types of complications and feelings of unfairness have made road pricing schemes
unpopular in many countries and cities, notwithstanding its enormous potentials.
Further, the cost of implementing link-based or route-based pricing could, in fact,
be huge, and talks on implementation of road pricing schemes have stalled in many
cities due to the huge financial implications. In this thesis, we have developed a
tolling scheme that does not depend on which link or route you use during a trip,
but on your origin and destination. The scheme has little data in its memory,
only noting your origin and destination and not tracking your travel trajectories.
This feature alone eliminates some privacy issues and saves cost in terms of data
storage/management. The scheme does not involve building of tollbooths or
mounting any equipment on the road, instead it involves a small electronic (a
kind of GPS) equipment on a car that notes the origin and destination of a trip
(like the public transport card of The Netherlands). In addition, since the origin-
destination (OD) tolling scheme does not depend on the link or route used, it
then means that our earlier critics of link-based and route-based schemes are now
addressed by this new developed scheme. This means users need not to pay more
due to a temporal road disturbance or where his residence or workplace is located.
The OD-based scheme optimally regulates traffic in and out of a transportation
infrastructure according to the time of the day enabling a peak-hour spread. The
proposed scheme has one downside though; it does not (in general) optimize the
route split among users.
In conclusion, this thesis sheds light on various road pricing models, and has
used game theory to model the “power tussle” among several stakeholders who
naturally have interests in road pricing schemes. It has also included the interests
of the road users in the main block of the toll decision algorithms, allowing for a
toll pattern that are less likely to face public disapproval. As a basis for practical
implementation, the thesis provides all the necessary mathematical models for
the various road pricing schemes.



Samenvatting

Het autobezit is de laatste jaren enorm gegroeid, wat heeft geleid tot allerlei
externe effecten, zoals files, uitstoot van schadelijke gassen, geluidsoverlast, ver-
keersonveiligheid, enzovoort. De wereldbevolking neemt naar verwachting toe van
7 miljoen mensen nu, naar 9 miljoen mensen in 2050. De snel groeiende steden
in Azië zullen veel groei opnemen, waarbij driekwart van de mensen in steden
leeft. Miljarden mensen zullen boven de armoedegrens leven, en zullen zich luxe
kunnen veroorloven. Over de hele wereld zal men zich verder ontwikkelen, zal
autobezit toenemen en daardoor zal er een grote vraag zijn naar capaciteit op de
weg, terwijl de capaciteit van deze infrastructuur niet zo snel zal stijgen als de
vraag ernaar. Daarbij zal de stijging in autobezit leiden tot verergering van de
externe effecten van verkeer. De meeste infrastructuur zal niet wijzigen, vanwege
geografische, financiële en politieke redenen, ook al stijgt de vraag harder dan het
aanbod van infrastructuur. Het gebruik van schone energie zal weliswaar emissies
verminderen, de auto’s worden er niet door van de weg gehaald, waardoor een
groot deel van de externe effecten blijft bestaan.
De genoemde redenen hebben er toe geleid dat economen zijn gaan denken
hoe deze externe effecten te verminderen, zonder de infrastructuur fysiek uit te
breiden. Invoering van betaald parkeren is een eerste aanpak geweest om auto’s
te ontmoedigen bepaalde gebieden binnen te rijden (vaak in binnensteden). Door
toegenomen welvaart steeg het autobezit en de voordelen van het autogebruik
wogen op tegen deze parkeertarieven. Daarbij komt dat werkgevers vaak par-
keerkosten vergoeden voor werknemers, waardoor het effect van parkeerbeleid
deels teniet wordt gedaan. Daardoor kunnen files niet volledig met parkeertar-
ieven worden bestreden. Daar komt bij dat parkeertarieven nu niet afhangen
van de verkeersintensiteit, gereisde afstand of milieukenmerken van het voertuig.
Tenslotte wordt doorgaand verkeer in een betaald parkeren gebied niet door deze
parkeertarieven beïnvloed. Dit laat zien dat parkeertarieven niet erg effectief zijn
om externe effecten van verkeer tegen te gaan.
De tekortkomingen van parkeertarieven als oplossing voor congestie hebben geleid
tot wat we nu noemen kilometerheffing (ook bekend als rekeningrijden, anders
betalen voor mobiliteit of het heffen van tol). Bij kilometerheffing wordt er een
heffing vastgesteld op segmenten van een vervoersnetwerk om gebruikers efficiënt
het netwerk op en door het netwerk te leiden. Een tariefschema bepaalt op welke
segmenten, hoeveel en wanneer tol er wordt geheven. Er zijn succesvolle voor-
beelden te vinden, waar steden door kilometerheffing zijn hersteld van frustr-
erende verkeerssituaties, waar infrastructuur is gefinancierd en waar sommige
externe effecten zijn verminderd, terwijl dat niet het primaire doel is geweest.
Vandaag de dag leiden externe effecten (zoals geluid, verkeersonveiligheid, uit-
stoot, enzovoort) tot grote zorgen over economische effecten en gezondheid, en
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toch werden deze aspecten genegeerd bij het opstellen van een tariefschema voor
kilometerheffing. Een succesvolle implementatie van elke vorm van kilomet-
erheffing hangt vooral af van twee factoren: de politiek en de acceptatie door
weggebruikers. In de praktijk hebben we kunnen zien dat het politieke debat
over welk tariefschema in te voeren en welk extern effect te bestrijden vaak heeft
geleid tot tot een “vroege dood” van kilometerheffing. Daar komt bij dat auto-
mobilisten kilometerheffing meestal als een extra belasting zien, waardoor ze in
opstand komen. Er ontstaat discussie in het parlement, omdat belanghebbenden
verschillende belangen hebben, die vaak niet met elkaar te verenigen zijn: anders
zou er immers geen discussie zijn. Een belanghebbende kan bijvoorbeeld een tar-
iefschema nastreven dat congestie vermindert, terwijl iemand anders liever een
tariefschema heeft dat het milieu schoon en groen houdt. Een tariefschema dat
één specifiek extern effect vermindert, kan een ander effect juist versterken. Dit
frustreert het debat en leidt vaak toe dat er geen beslissing wordt genomen. Nog
ingewikkelder wordt het als een tariefschema binnen een specifiek land / regio
leidt tot een efficiënte verdeling van verkeer, maar tot een verslechtering van de
verkeerssituatie in een (nabijgelegen) land / regio. Voor een acceptabel tarief-
schema moeten alle belanghebbenden en landen dus betrokken worden bij het
ontwerp ervan. We hebben een tariefschema nodig dat rekening houdt met con-
flicterende doelen van belanghebbenden, van regio’s en van gebruikers en iedere
belanghebbende tevreden stelt.
Speltheorie biedt veelbelovende modellen om tot een dergelijk tariefschema te
komen. In dit proefschrift worden modellen ontwikkeld om de problemen op te
lossen die ontstaan bij het ontwerpen van een tariefschema voor kilometerheffing
door conflicterende doelstellingen van actoren. Eerst onderzoeken we waarom
belanghebbenden normaal niet tot een compromis komen. Dit komt doordat
het debat tussen beleidsmakers over het tariefschema in het algemeen geen Nash
evenwicht (NE) kent. Dit houdt in dat bij een bepaald tariefschema, en dus
een bepaalde verkeerssituatie, er altijd een belanghebbende (of regio) te vinden
is die zijn situatie kan verbeteren door een ander tariefschema te kiezen uit de
set van alle mogelijke tarieven. Ook al kan het begrenzen van de tarieven NE
soms afdwingen, het komt ook voor dat er een cyclisch spel wordt gecreëerd
tussen de belanghebbenden, wat leidt tot een spel in een niet-Nash evenwicht.
Dit betekent dat ongecoördineerde belanghebbenden of regio’s een onverzadig-
baar of niet optimaal tariefschema kunnen creëren, wat leidt tot een instabiele
situatie. Het ontwikkelde model heeft als input het verkeersnetwerk, de afwikkel-
ingsvoorwaarden en de doelen van de belanghebbenden en weggebruikers. Op
basis daarvan presenteert het een stabiel tariefschema aan de belanghebbenden,
dat elk van hen tevreden stelt. De modellen zoals ontwikkeld in hoofdstuk 3
definiëren stabiele tariefschema’s voor belanghebbenden, maar garanderen het
bestaan van Nash evenwicht niet.
Omdat we onder normale omstandigheden NE tussen de belanghebbenden niet
kunnen garanderen, en als het bestaat het NE niet Pareto optimaal hoeft te zijn,
hebben we een mechanisme ontworpen dat NE tussen de belanghebbenden in-
troduceert. Dit mechanisme zorgt ervoor dat het uit NE afgeleide tariefschema
optimaal is voor alle belanghebbenden en daarnaast Pareto optimaal is voor het
systeem als geheel. Dit mechanisme noemen we het optimaal Nash veroorzakend
mechanisme. Dus als kilometerheffing zich aandient, ontwerpt het mechanisme
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een tariefschema voor het gegeven netwerk en presenteert de belanghebbenden
een tariefschema dat resulteert in een Nash evenwicht. Op deze manier kunnen
belanghebbenden (of regio’s) het tariefschema niet voor zichzelf verbeteren, wat
waarschijnlijk tot een zekere tevredenheid leidt. Dit nieuwe model en mechan-
isme voorkomt frustrerende debatten om tot een compromis te komen, terwijl
we weten dat een compromisoplossing niet tot een evenwicht hoeft te leiden.
Doordat het uit NE afgeleide tariefschema optimaal is voor de belanghebbenden
en Pareto optimaal voor het systeem als geheel, maakt het meer waarschijnlijk dat
het schema door de belanghebbenden en regio’s wordt geaccepteerd. Daarnaast
hebben we het belang van de weggebruikers meegenomen in de vorm van lage
tarieven, het bestaan van tolvrije wegen en billijkheid (zoals verschillende tar-
ieven voor verschillende inkomensklassen), om zeker te zijn van acceptatie door
weggebruikers.

Het optimaal Nash veroorzakend mechanisme kan op veel praktijkproblemen
worden toegepast, zoals het afleiden van optimale prestatie in de volgende situ-
aties: 1. Met sensoren uitgeruste auto’s wisselend bijvoorbeeld verkeers- en
milieu-informatie uit in een telecommunicatienetwerk binnen een beperkt tijds-
venster. 2. Verschillende lokale overheden bepalen toltarieven op aparte regio’s
in een verkeersnetwerk. 3. Energieproducenten in een energiemarkt die wordt
geliberaliseerd. 4. Spel tussen opdrachtgever en opdrachtnemer. 5. Internet pro-
viders bij het vaststellen van de prijs van hun diensten. 6. Concurrentie tussen
bedrijven binnen de zelfde markt. 7. Werknemers die het aantal werkdagen flex-
ibel kunnen indelen. In hoofdstuk 5 wordt nader uitgelegd hoe we het optimaal
Nash veroorzakend mechanisme kunnen aanpassen voor deze problemen. Het
speltheoretisch model in dit proefschrift heeft geleid tot een nieuwe manier om
optimalisatieproblemen met meerdere doelstellingen (MOP’s) op te lossen. In
hoofdstuk 6 van dit proefschrift wordt genoemd dat het altijd wenselijk is om
alle mogelijke oplossingen van een MOP op een rij te zetten, zodat een beslisser
geschikte punten kan kiezen (normaal op het Pareto front). De meeste bestaande
algoritmen die alle oplossingen op een rij zetten zijn afhankelijk van het prin-
cipe van Pareto dominatie. Dit principe is de basis van de meeste genetische
algoritmes, welke robuust en krachtig zijn gebleken bij het oplossen van MOP’s.
Als het aantal doelstellingen toeneemt, vinden deze algoritmes het moeilijk om
om te gaan met Pareto dominantie en beginnen dus slechter te presteren. Meer
specifiek, vanaf meer dan 4 doelstellingen gaan de algoritmes achteruit. We zien
elke doelstelling in het MOP als een speler in de speltheoretische benadering uit
dit proefschrift. Ondanks dat het speltheoretische Nash model niet garandeert
dat alle niet gedomineerde oplossingen worden gevonden, neigt de concurrentie
tussen de spelers (waar elke speler zoekt naar de beste oplossing gegeven wat an-
dere spelers doen) naar het vinden van oplossingen dichtbij het Pareto front. Bij
ons testprobleem hebben we gevonden dat alle tijdens het spel gevonden oplossin-
gen op het Pareto front liggen of in de buurt ervan, wat de consistentie met de
speltheoretische benadering laat zien. Er worden dus goede oplossingen gegene-
reerd in een vroeg stadium van het spel en dat is zelden het geval bij het gebruik
van genetische algoritmes. Verder wordt het spelmechanisme dat we beschrijven
niet slechter als het aantal doelstellingen toeneemt en heeft het niks te maken met
Pareto dominatie. Dit brengt ons tot de conclusie dat de speltheoretische ben-
adering een veelbelovende methode is om snel (niet gedomineerde) oplossingen
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te genereren voor problemen met meerdere doelstellingen. Een stap voor vervol-
gonderzoek is het inbrengen van goede eigenschappen van genetische algoritmes
in de speltheoretische benadering. We geloven dat dat een krachtig instrument
voor het oplossingen van MOP’s zal opleveren.
Bij tijdelijke verstoringen in het wegennet, zoals ongelukken en wegwerkzaam-
heden kan het zijn dat mensen hun gebruikelijke reispatroon of route aan moeten
passen. Dit leidt meestal tot extra kosten voor de weggebruikers. Bij een sys-
teem van kilometerheffing kan dat tot complicaties leiden. Een wegvak gebaseerd
tariefschema kan betekenen dat gebruikers nu meer moeten betalen, omdat ze
gebruik moeten maken van een (betaald) wegvak dat ze eerder vermeden. Ook in
een route of kilometer gebaseerd systeem moeten gebruikers meer betalen, omdat
de gebruikers meer kilometers af moeten leggen om hun rit te maken. Een wegvak
gebaseerd systeem kan er toe leiden dat een gebruiker geen keus meer heeft, bij-
voorbeeld als hij om zijn eigen woonstraat te bereiken nog maar één (betaalde)
route beschikbaar heeft, of alleen een nog duurder alternatief heeft. De liter-
atuur laat zien dat dergelijke complicaties en gevoelens van oneerlijkheid ertoe
hebben geleid dat betalen voor weggebruik onpopulair is geworden in veel landen
en steden, ook al heeft het erg veel potentie. Daarnaast kunnen de kosten van
wegvak of route gebaseerde systemen erg groot zijn, waardoor de implementatie
van een vorm van kilometerheffing in veel steden er niet van is gekomen. In dit
proefschrift hebben we een tariefsysteem ontwikkeld dat niet afhangt van welke
link of welke route er tijdens de rit wordt gebruikt, maar afhangt van de herkomst
en de bestemming. Het systeem hoeft weinig gegevens te onthouden: alleen de
herkomst en de bestemming, en dus niet de trajectorie van de hele rit. Dit lost
meteen enkele aspecten rondom privacy op en bespaart kosten doordat er minder
dataopslag nodig is. Dit systeem heeft geen tolpoortjes of andere apparatuur op
de weg nodig. In plaats daarvan is een klein (GPS achtig) apparaatje nodig in het
voertuig dat de herkomst en de bestemming detecteert (analoog aan de Neder-
landse OV-chipkaart). Omdat het tolsysteem op basis van herkomst-bestemming
(HB) niet afhangt van de gebruikte wegvakken of routes, vervallen de eerdergen-
oemde bezwaren voor het beprijzen van wegvakken of routes. Dat betekent dat
gebruikers niet extra hoeven te betalen in het geval van een verstoring in het
netwerk. Het HB gebaseerde systeem reguleert de hoeveelheid verkeer dat over
de tijd het netwerk instroomt, waardoor het mogelijk wordt de spits te verbre-
den. Een nadeel van dit systeem is dat het (in het algemeen) de routekeuze van
gebruikers niet optimaliseert.
Concluderend geeft dit proefschrift inzicht in verschillende manieren om de ef-
fecten van kilometerheffing te modelleren. Het maakt daarbij gebruik van spelthe-
orie om het speelveld te modelleren tussen de belanghebbenden die logischerwijs
betrokken zijn bij rekeningrijden. Daarnaast is het belang van de weggebruikers
opgenomen in de kern van het algoritme dat het tariefschema bepaalt, waardoor
het minder waarschijnlijk is dat het schema leidt tot afkeer bij het grote pub-
liek. Een eerste basis voor praktische implementatie wordt gelegd doordat dit
proefschrift alle noodzakelijke wiskundige modellen verschaft voor verschillende
mogelijke tariefschema’s bij rekeningrijden.
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Summary

Road traffic externalities such as congestion, high noise levels, 

emission, accidents, are increasing due to the rise in vehicle 

ownership. Owing to financial, geographical and/or feasibility 

constraints, it could not be practically feasible to combat these 

externalities by expanding infrastructures. This thesis presents a 

novel and interesting road pricing approaches to deal with these 

conflicting objectives with multiple actors. Models show that we can 

induce optimal system performance among competing stakeholders. 
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